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EXECUTIVE SUMMARY 

Smaller jurisdictions frequently do not have the resources to collect household travel survey 
(HTS) data. This study introduces a novel non-parametric technique for combining and 
reweighting raw HTS datasets collected in other jurisdictions to create a ‘pseudo-HTS’ 
dataset that is representative of the target region, in terms of both the demographic 
characteristics of the local population of the target region, and the level-of-service of the 
local transport system.  

We hypothesise that a significant proportion of variance in travel behaviour decisions within 
an urban area can be explained by the relative location of people and jobs within that area. 
For example, imagine an individual observed in the Melbourne HTS, living in St Kilda East 
who commutes to the Melbourne CBD on observation day, and stops in Prahran-Windsor on 
the way back, as shown in Figure 1. Our non-parametric framework tries to find the closest 
match to these three locations in the target region, Greater Adelaide in this case, such that 
the relative location of people and jobs between the locations in Greater Adelaide is 
comparable to the relative location of people and jobs between Melbourne CBD, St Kilda 
East and Prahran-Windsor. The level of similarity between the source and target regions is 
used as a weight to control for differences.  

We apply the framework to generate a pseudo-HTS for Greater Perth (GP), using HTS data 
collected in other jurisdictions. We compare inferences from the inferred pseudo-HTS with 
those from the actual HTS conducted in GP to validate the methodology. We use GP as our 
target region instead of GA because recent HTS data is available for the former (which is 
used to validate the methodology). 

For TDM sub-models that are estimated at a trip-level, our approach appears to perform 
reasonably well. In particular, estimation results for trip distribution and mode choice sub-
models estimated using the original WA HTS and our inferred pseudo-HTS yield highly 
comparable estimates. However, sub-models estimated at a more aggregated level may 
potentially be biased due to limitations inherent in our approach. Our framework tries to 
match behaviours at a trip or tour-level. Trips or tours that do not have a good match in the 
target region are discarded. When the transferred trips or tours are aggregated at a higher 
level, the discarded trips/tours can create biases. For example, our framework 
underestimates the average number of daily trips undertaken by an individual. Similarly, at a 
zone-level, for zones in the target region that have good matches in the source region, our 
framework overestimates the trips attracted by these zones. Conversely, for zones in the 
target region that do not have a good match in the source region, our framework 
underestimates the trips attracted by these zones. 

 

Figure 1: Illustrative example showing how travel behaviours observed in Greater Melbourne would 
be transferred to Greater Adelaide using our non-parametric framework 
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1 INTRODUCTION 

Travel demand models (TDMs) are quantitative tools that are used by local, regional and 
national planning organizations for the development of evidence-based transport policy. 
TDMs can offer insights on current patterns of travel behaviour and provide a framework for 
predicting changes in behaviour in response to changes in the transport and land use 
system. Forecasts from TDMs are used to determine the capacity that new infrastructure 
must provide; and to facilitate the economic, environmental and social impact assessments 
of competing initiatives. 

Traditionally, TDMs have been calibrated and validated using data collected through 
household travel surveys (HTSs) that ask participating individuals about their travel patterns 
over a 1 or 2-day observation period. These data collection methods are expensive. Hartgen 
and San Jose (2009) report average costs of $487,000 per HTS, and roughly $150 per 
response, though they note that “many surveys cost considerably more than the average, 
and the spread of the data is substantial”. The Sydney Household Travel Survey currently 
samples roughly 5,000 households each year from a population of roughly 5 million, and 
observes their travel patterns over a 24-hour period, at an estimated cost of approximately 
$1 million per year.  

The last HTS in metropolitan Adelaide was conducted in 1999. That data is now more than 
twenty years old, and not reflective of current or future travel patterns within the region. 
However, limited resources have precluded the collection of more recent HTS data in the 
region. This study aims to develop a new methodology for recalibrating TDM model 
parameters that does not require collection of HTS data for the jurisdiction of interest, but 
uses HTS data collected by other comparable jurisdictions. 

Transport planners in smaller jurisdictions that do not have the resources to invest in their 
own data collection exercises frequently use datasets from other comparable jurisdictions to 
calibrate their TDMs. In many cases, the parameters of the TDM may be borrowed directly 
from established values reported in the literature. For example, the US National Cooperative 
Highway Research Program (NCHRP) has drafted a best-practices report on the calibration 
and validation of TDMs that includes procedures for transferring datasets across 
jurisdictions, and recommended values for a subset of standard model parameters (see 
Cambridge Systematics, 2012). 

As part of our previous work, DIT and UniSA developed and tested a similar methodology for 
the recalibration of SAM that does not rely on primary data collection methods. In particular, 
we used household travel diary datasets collected in six other jurisdictions within Australia 
and New Zealand between Jan 2018 and Feb 2020 to update model parameters. These 
jurisdictions were Greater Melbourne, Southeast Queensland (SEQ), Greater Perth, Greater 
Hobart and Australian Capital Territory in Australia, and Auckland from New Zealand. 
Wherever possible, we augmented these datasets with additional information available 
through the Census and other datasets collected by the Australian Bureau of Statistics 
(ABS) and the Commonwealth Government. In some cases, we updated model parameters 
based on established values reported in the literature. Finally, we collected travel diary data 
from a small sample of 493 residents within Greater Adelaide (GA) to validate our final 
model parameters as part of the 2021 Greater Adelaide Travel Survey (GATS).  
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In our previous work, we employed a two-step model averaging approach. First, for each 
sub-model within SAM, we used household travel diary and transport cost skims from each 
of the other jurisdictions to estimate model parameters for these jurisdictions. Second, we 
averaged parameters from the six different jurisdictions, whilst controlling for outliers, to 
identify the appropriate parameters for GA. By including multiple jurisdictions within our 
analysis from which to pick parameter estimates for the GA region, we were able to identify 
outliers more easily. By collecting primary travel diary data from a small sample of GA 
residents, we were able to identify which jurisdictions most closely correspond to GA. 

The present study builds on this previous work through the development of an alternative 
data averaging approach. We propose combining and reweighting raw HTS datasets 
collected in other jurisdictions to create a ‘pseudo-HTS’ dataset that is representative of the 
target region, in terms of both the demographic characteristics of the local population of the 
target region, and the level-of-service of the local transport system. We apply the framework 
to generate a pseudo-HTS for Greater Perth (GP), using HTS data collected in other 
jurisdictions. We compare inferences from the inferred pseudo-HTS with those from the 
actual HTS conducted in GP to validate the methodology. We use GP as our target region 
instead of GA because recent HTS data is available for the former (which is used to validate 
the methodology). 

The remainder of the report is organized as follows: Chapter 2 presents the data-averaging 
methodology developed by this study. Chapter 3 compares data from the pseudo-HTS and 
actual HTS for GP in terms of summary statistics. Chapters 4-7 undertake a more detailed 
comparison between the two datasets in terms of trip production, trip attraction, trip 
distribution and mode choice. Chapter 8 concludes with a summary of key findings and 
directions for future research. 
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2 METHODOLOGY, APPROACH AND TECHNICAL FRAMEWORK 

As mentioned previously, transport planners in smaller urban areas that do not have the 
resources to invest in their own data collection exercises frequently use datasets from other 
comparable jurisdictions to calibrate their TDMs. In many cases, the parameters of the TDM 
may be borrowed directly from established values reported in the literature. For example, the 
US National Cooperative Highway Research Program (NCHRP) has drafted a best-practices 
report on the calibration and validation of TDMs that includes procedures for transferring 
datasets across jurisdictions, and recommended values for a subset of standard model 
parameters (see Cambridge Systematics, 2012). The transferred model parameters can 
subsequently be used to generate a pseudo-HTS for the target region using microsimulation 
methods.  

For example, Greaves (2000), Stopher et al. (2003) and Greaves (2006) have previously 
used variations of this general method to generate pseudo-HTS data for Adelaide. The 
approach involves utilizing a sample of actual households with known socio-demographic 
information and then simulating travel pattern characteristics based on distributions derived 
from data and models from other HTSs. Broadly, their methodology comprised three distinct 
steps. First, they generated a synthetic population comprising a subset of households, with 
accompanying socio-demographic characteristics, using the 1996 Census Household 
Sample File (HSF) sourced from the 1996 ABS Census data specific to the Adelaide region. 
Second, they estimated model parameters denoting the impact of key transport, land use 
and demographic variables on key travel behaviours of interest, using HTS data from Dallas 
and Salt Lake City in the US, primarily due to the absence of sufficiently recent national HTS 
data in Australia. Third, they simulated travel behaviours for the synthetic population, feeding 
their socio-demographic characteristics from the first step as input variables into the models 
estimated in the second step. The simulated data were subsequently compared against the 
1999 Metropolitan Adelaide Household Travel Survey (AHTS) to assess the simulated data's 
ability to replicate the observed travel patterns in the AHTS survey. 

In general, findings from these and other related studies in the broader literature on the 
transferability of travel demand models indicate that the method is sufficiently accurate in 
most cases at generating travel behaviours for the target region. However, the method can 
only generate behaviours specified explicitly as dependent variables in the travel demand 
models. For example, if the mode choice sub-model excludes modes such as taxis, 
ridesharing and e-scooters, then the model cannot predict these mode choice behaviours, 
and consequently, use of these modes is not captured by a pseudo-HTS generated using 
this method. If the analyst were interested in understanding or predicting use of these 
excluded modes in the target region, they would have to redo the second and third steps of 
the methodology, as described above, making sure to include these modes explicitly as 
dependent variables in the second step.  

In this study, we develop an alternative non-parametric method that seeks to mitigate these 
limitations of the traditional parameter-transfer approach. We hypothesise that a significant 
proportion of variance in travel behaviour decisions within an urban area can be explained 
by the relative location of people and jobs within that area. For example, imagine an 
individual living in a low-density and sparsely populated suburb in Tasmania, 10 km away 
from the Hobart CBD, who commutes to the CBD every day by car. If this individual were 
transferred to the Perth metropolitan area, such that they lived roughly 10 km away from the 
Perth CBD, our non-parametric framework would predict that the individual commutes to the 
Perth CBD every day by car. Travel behaviours observed for other individuals belonging to 
other jurisdictions can similarly be transferred to the target region, and the collection of trips 
thus transferred can be treated as a ‘pseudo-HTS’ for the target region. 
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This is admittedly a naïve assumption that does not control for differences in other mitigating 
factors between the source and target regions, such as public transport network, road 
congestion and climate. In principle, one could make the non-parametric framework more 
sophisticated to account for differences in each of these variables. However, that might 
necessitate using a parametric framework of sorts similar to the original approach used by, 
among others, Stopher et al. (2003), as a parsimonious solution to the problem of how to 
incorporate a large number of explanatory variables. The benefit of the non-parametric 
framework is that the transferred behaviours are not constrained by model assumptions. If 
the individual in our example above took a taxi to work instead in Hobart, then they would be 
assumed to take a taxi to work if they were living in Perth at a comparable distance away 
from the CBD as they were in Hobart.   

Our non-parametric framework may be described in terms of three critical steps: 

1. Preparing characteristics of origin and destination zones: This involves 
compiling the relevant characteristics of origin and destination zones for each trip 
recorded in the given HTS. 

2. Transferring trips from the source HTS to the target HTS: Trips from the source 
HTS are transferred to the target HTS based on the characteristics of the origin and 
destination zones. 

3. Combining transferred trips from different source jurisdictions and validation: 
Transferred trips from all given HTS are combined into a single dataset meant to 
represent the target HTS, which allows for the validation of results. 

In the subsequent sections, we delve into each of these steps in detail. 

2.1 Preparing the characteristics of the origin and destination zones 

After analysing the travel patterns observed in comparable Household Travel Surveys 
(HTS), we endeavour to align the origin and destination zones1 of the given HTS with those 
of the target HTS based on the following transportation-related variables: 

A. Population and Employment: This entails matching the number of residents and 
jobs located at each trip origin and destination. 

B. Distance: We consider the geographical distance between each trip origin and 
destination. 

To acquire this information, we could rely on data from land use and transportation 
databases. However, due to constraints in time and resources, we opt to substitute 
information from alternative sources. Specifically, we derive the number of residents and 
jobs for each zone from the ABS 2016 Census of Population and Housing, which provides 
comprehensive demographic and employment data. Additionally, to simplify the calculation, 
we determine the distance between each trip origin and destination zones as the geodetic 
distance between the coordinates attached to the centroids of these zones. 

 

 

 
1 We adopt SA2 as the zonal level throughout Stage III of the report, unless otherwise specified.  
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Table 1. An actual trip extracted from Greater Melbourne HTS 

Trip ID Origin Destination Mode Purpose 
1 Pakenham – North Narre Warren – South West Bus 

 

Work 
2 Narre Warren – South West Pakenham -South Bus 

 

Shopping 
3 Pakenham -South Pakenham – North Bus 

 

Home 
 

In Table 1, we present the actual travel movements of an individual as recorded in the 
Greater Melbourne Household Travel Survey (HTS). Specifically, the individual undertakes 
three distinct trips, commencing from what is presumed to be their residence in "Pakenham 
– North." Subsequently, the person travels to "Narre Warren – South West," with a stopover 
in "Pakenham - South," before returning to "Pakenham – North." The characteristics of each 
zone are depicted in Figure 2. For instance, "Pakenham – North" is inhabited by 18,486 
individuals and accommodates 3,427 workers. In contrast, "Narre Warren – South West" is 
home to 13,989 residents and attracts 10,339 workers. Furthermore, the geodetic distance 
between "Pakenham – North" and "Narre Warren – South West" is measured at 15.4 km.  
The next logical step is to identify zones within the target jurisdiction that exhibit similar 
characteristics to those of "Pakenham – North" and "Narre Warren – South West." However, 
a significant challenge arises when comparing the actual count of dwellings or employed 
persons in each zone, as well as the distance between the origin and destination zones. 
This challenge stems from the vast differences in scale between zones in different 
jurisdictions. For example, the Melbourne CBD SA2 zone records a population of 57,735 
and 221,136 employed persons. Consequently, when a trip recorded in the Greater 
Melbourne HTS includes "Melbourne CBD," it becomes less feasible to transfer the trip to 
any zones in the study jurisdiction, such as Greater Adelaide, due to the lack of a zone with 
a comparable scale to that of "Melbourne CBD." To mitigate the impact of these scale 
differences, it is essential to normalize the characteristics of all zones across both the given 
and target HTS. 

We then adopt Min-Max scaling method to restrain the zonal characteristics to a fixed range 
of between 0 and 1. This method provides some advantages such as simple 
implementation, preservation of the relationship between the original data points, and highly 
interpretable. The formula as of below: 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  =  
𝑋𝑋 −  𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛

𝑋𝑋𝑛𝑛𝑛𝑛𝑚𝑚  −  𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛
 (1) 

Particularly, we collect the population (employment) of SA2 zones of the whole Australia, 
then apply the scaling method altogether. As provided in Table 2, the population and 
employment of “Pakenham – North” after scaling are 0.3202 and 0.0155, respectively. 
Meanwhile, “Narre Warren – South West” experience slightly fewer residents (13,989 versus 
18,486), but significantly higher employment (10,339 versus 3,427) in comparison with 
“Pakenham – North”. As a result, the normalize population and employment of “Narre 
Warren – South West” are 0.2423 and 0.0468, respectively.  
In terms of distances, we begin by gathering information on the distances between each pair 
of zones within each jurisdiction. Subsequently, we pool these pairs’ distances2 together and 
utilize Min-Max scaling to normalize them. As illustrated in Table 2, the normalized distance 

 
2 Pairs of origin and destination zones exclusively belong to each respective jurisdiction within the dataset. In other words, no 
pair of zones consists of an origin zone from one jurisdiction and a destination zone from another. For instance, an origin zone 
may be in Greater Melbourne, while the destination zone would also be within Greater Melbourne, ensuring that all trips remain 
within the same jurisdictional boundaries.  
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between "Pakenham – North" and "Narre Warren – South West" is calculated as 0.0962. 
Moreover, the smallest recorded distances occur between Collingwood and Fitzroy in 
Melbourne, while the largest distances are observed between Beaudesert and Kilcoy in 
Queensland.  

 

Figure 2. Visualization of an actual trip extracted from Greater Melbourne HTS 

 

 

 

Table 2. Normalize zonal characteristics. 

Pakenham – North Narre Warren - South West 
 

Population Employment Population Employment Distance 
18,486 3,427 13,989 10,339 15.4km 

Normalized variable 
Origin-Pop Origin-Emp Dest-Pop Dest-Emp N_distance 
0.3202 0.0155 0.2423 0.0468 0.0962 
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2.2 Transferring trips from the given jurisdiction to the target jurisdiction 

In the preceding sections, we discussed the crucial zonal information required and the initial 
processing steps necessary to make this data comparable, setting the stage for meaningful 
comparisons later on. This section outlines the methodology for transferring trips from any 
given Household Travel Survey (HTS) to the target HTS within the study jurisdiction3. The 
primary objective is to identify zones in the target jurisdiction that closely resemble the 
characteristics of the zones recorded in the given HTS. To achieve this, various methods 
can be employed to generate similarity scores and address the challenge effectively. 

Similarity scores quantify the resemblance or likeness between two objects, such as data 
points, based on their characteristics or features. These scores aim to measure how closely 
related or comparable the objects are. Various methods exist to compute similarity, including 
Euclidean distance, cosine similarity, Jaccard similarity, and Pearson correlation coefficient. 
Euclidean distance measures the straight-line distance between points in a Euclidean space, 
cosine similarity calculates the cosine of the angle between two vectors, Jaccard similarity 
computes the intersection over the union of sets, and Pearson correlation coefficient 
assesses the linear correlation between two variables. Each method has its own advantages 
and limitations, and the choice of similarity measure depends on the specific context and 
nature of the data being analysed. In this report we select Euclidean distance measures as 
our main proxy for similarity measurements due to its interpretability and wide applicability. 

Euclidean distance, rooted in the Pythagorean theorem, finds its application in contexts 
where data can be represented as points within a Cartesian coordinate system. 
Mathematically, it is computed as the square root of the sum of squared differences between 
corresponding coordinates of two points. Consider points A and B in an n-dimensional 
space, each characterized by their own set of coordinates (x1, x2, ..., xn) and (y1, y2, ..., yn) 
respectively. The Euclidean distance between these points is then calculated as follows: 

Euclidean distance= ��(𝑥𝑥𝑛𝑛 −  𝑦𝑦𝑛𝑛)2
𝑛𝑛

𝑛𝑛=1

 (2) 

 

Euclidean distance is a critical metric for identifying comparable trips, as it incorporates both 
the population and employment characteristics of the origin and destination zones, along 
with the distances between them. Consequently, the Euclidean distance for each pair of 
zones must be calculated based on these five key characteristics, encompassing trip data 
recorded in the given Household Travel Survey (HTS) and all potential pairs of zones in the 
target jurisdiction. Subsequently, the pair of zones yielding the minimum Euclidean distance 
can be selected as the most suitable match. Therefore, Equation 2 can be reformulated as 
follows: 

Match pair of zones = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛

�∑ �𝑥𝑥𝑛𝑛 −  𝑦𝑦𝑛𝑛,𝑘𝑘�
25

𝑛𝑛=1   (3) 

 
3 Before the matching process, we maintain all assumptions and considerations related to cleaning and preparing the household 
travel surveys (HTS), as adopted in Stage II. For example, with Greater Melbourne, trips made by individuals from households 
located outside of Greater Melbourne are removed as part of the cleaning process to ensure data accuracy and relevance to the 
specific geographic area under study. Or only keeping trips recorded during 2018-2020 period, etc. 
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Where,  

- 𝑥𝑥𝑛𝑛 is the set of characteristics of the actual trips recorded, which are, 
o the population of the origin,  
o the employment of the origin,  
o the population of the destination, 
o the employment of the destination, 
o and the distance between the origin and destination 

 
- 𝑦𝑦𝑛𝑛,𝑘𝑘 is the set of “i” characteristics of the “k”-th pairs of zones of the target jurisdiction. 

The number "n" of all possible pairs of zones is determined by the combination of zones 
within the target jurisdiction. For example, if the target jurisdiction comprises 100 zones, the 
total number of pairs of zones is calculated as Combination - C (100, 2), resulting in 4,950 
pairs of zones. 

Building upon the previous example of actual trips made by a 30-year-old male residing in 
Greater Melbourne, the matched zones are provided at the conclusion of step 2 in Figure 3. 
Ideally, for each zone visited by the individual in Greater Melbourne, we aim to identify 
zones in Adelaide with similar characteristics in terms of population, employment, and 
distances between them. Consequently, the individual would have made three trips, 
beginning from "Modbury Heights" to "North Haven," then from "North Haven" to "Port 
Adelaide," before returning to "Modbury Heights." 

The characteristics of each zone after being transferred to the Greater Adelaide (GA) 
dataset are only relatively comparable to zones in Greater Melbourne (GM) in terms of 
normalized figures. Illustrated in Table 3, "Modbury Heights" has a population of 18,628 and 
employment of 1,826, which normalize to 0.3226 and 0.0082, respectively. Similarly, "North 
Haven" has a population of 14,013 and employment of 5,831, which normalize to 0.2427 and 
0.0263, respectively. The distance between "Modbury Heights" and "North Haven" is 17.1 
km or 0.1069 in normalized distance. With this information, the Euclidean distance between 
the pair "Pakenham – North" and "Narre Warren - South West" in GM and the pair "Modbury 
Heights" and "North Haven" in GA is approximately 0.0243, which represents the lowest 
Euclidean distance when comparing the GM pair with all possible pairs generated from all 
GA zones. 

Table 3. Characteristics of the zone that matched the actual trip from GM 

Modbury Heights North Haven 
 

Population Employment Population Employment Distance 
18,628 1,826 14,013 5,831 17.1km 

Normalized variable 
Origin-Pop Origin-Emp Dest-Pop Dest-Emp N_distance 
0.3226 0.0082 0.2427 0.0263 0.1069 
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Figure 3. Visualization of trips after transferring to Greater Adelaide 

 

However, transferring trips from given jurisdictions can present significant challenges. Figure 
4 illustrates an example of actual trips made by another individual recorded in the Greater 
Melbourne Household Travel Survey (HTS). The individual exhibits two distinct tours in the 
record. The first tour involves trips made to three different locations: "Pakenham – North," 
"Dandenong North," and "Southbank." After visiting the last zone, the individual returns to their 
home SA2 zone, "Pakenham – North." Subsequently, the individual embarks on their second 
tour, traveling between their home SA2 zone, "Pakenham – North," and "East Melbourne." In 
practice, observed travel behaviours can become much more complex. This complexity 
presents the first dilemma in the process of transferring trips to the target jurisdiction." 
 

Figure 4: Example of multiple tours made by an individual in GM HTS 

 

 

Previously, we outlined the method of selecting pairs of origin and destination zones based 
on the minimum value of Euclidean distance. While this approach works effectively for 
transferring individual pairs of zones, it becomes more complex when dealing with tours 
consisting of multiple interconnected trips. Continuing with the example provided earlier, 
suppose an individual's first trip within a tour is from "Pakenham – North" to "Dandenong 
North," followed by a second trip from "Dandenong North" to "Southbank." In this scenario, 
the transferred trips should maintain a similar sequential pattern. That is, if the first trip starts 
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from location "A" to "B," then "B" becomes the starting point of the second trip to another 
destination "C". Hence, it is plausible that the destination for one pair of zones could serve 
as the origin for another pair. As a result, the matching process becomes considerably more 
intricate, as we need to match not just one pair of zones, but multiple pairs of zones 
simultaneously, considering the sequential nature of tours and potential overlaps between 
destinations and origins. Moreover, to add further complexity, we may need to consider 
whether the individual's home SA2 zone remains consistent across different tours. 

Further, as reported in Table 4, we first analyse the number of distinct locations that 
individuals within each of the five Household Travel Surveys (HTS) may travel between. This 
count represents the number of unique locations visited by individuals, irrespective of the 
specific routes taken. We specifically separate tours4 that a person may travel. Then for 
each tour that a person made, we count how many distinct zones that he/she travel 
between. We then present the distribution of the number of unique locations that an 
individual may travel between. The data indicates that approximately 80% to 90% of 
individuals travel between two to three distinct locations, while it is less common for 
individuals to travel among more than five different zones. 

 

Table 4. Summary of the proportion of number of different zones that individuals travel across 
jurisdictions. 

Number of different zones  GM SEQ WA ACT TAS 

2 77% 80% 70% 69% 57% 
3 18% 16% 21% 22% 25% 
4 4% 3% 6% 7% 12% 
>=5 1% 1% 3% 3% 6% 
 

As previously discussed, the matching process may need to be executed concurrently for 
multiple pairs of zones. As the number of zones requiring matching increases, the number of 
calculations grows significantly. For example, if the target jurisdiction comprises 100 zones, 
and we need to transfer complex tours involving multiple zones, the number of calculations 
would be a combination of C (100, r), where r is the number of different zones in the tour that 
need to be transferred. Figure 5 illustrates the relationship between the number of 
combinations (y-axis) for a set of 100 zones and the increasing number of selected zones 
from the set (x-axis). 

 
4  A tour is defined as a series of trips that are completed by a person, with each trip ending back at their initial starting zone or 
home zone.  
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Figure 5. Number of combinations with increasing number of choosing objects from the set 

 

 

Given the limitations of our report, we propose several solutions to address the challenges 
outlined above. First, we opt for a naive approach where each trip is transferred 
independently, without considering potential connections to other trips within an individual's 
tour. Throughout the remainder of the report, we refer to the transferred Household Travel 
Surveys (HTS) resulting from this method as "Pseudo-HTS transfers at the trip level”5. 

Secondly, we introduce constraints at the tour level. Specifically, we analyse each 
individual's travel behaviour and divide it into distinct tours. We ensure that trips within each 
tour are connected, replicating the structure observed in the given HTS. We refer to this 
approach as "Pseudo-HTS transfers at the tour level" from this point onward. The most 
suitable tour is determined as the one experiencing the smallest average Euclidean distance 
among all origin-destination pairs observed in the actual HTS. Figure 6 illustrates the optimal 
matching at the tour level, enforcing constraints on connected trips. In this example, the 
matching tour comprises three distinct locations: "Modbury Heights," "North Haven," and 
"Port Adelaide," corresponding to the translated zones from "Pakenham – North," "Narre 
Warren – South West," and "Pakenham – South," respectively. Additionally, the three pairs 
of zones are connected in a manner consistent with the observed tour. The resulting 
average Euclidean score is reported as 0.054, calculated as the average score from each 
pair of zones.  

To mitigate the exponential increase in calculations that could become infeasible in the short 
term, we purposefully exclude any tours consisting of five or more locations from the 
Pseudo-HTS transfers at the tour level. This decision is guided by the smaller proportion of 
individuals observed to travel between five or more unique locations, as illustrated in Table 
4. By focusing on tours with a smaller number of locations, we aim to streamline the 
matching process and prioritize computational efficiency without sacrificing the 
representativeness of the transferred data. 

 
5 We use the terms “Pseudo-HTS” and “transferred HTS” interchangeably throughout the report. 
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Figure 6. Example of matching at tour level 

 

2.3 Validation of the Pseudo Household Travel Survey 

In this section, we delve into the calibration process of the synthesized HTS data from step 
2. We emphasize the paramount importance of justifying the chosen method by thoroughly 
assessing whether the translated HTS effectively mirrors the travel behaviour patterns within 
the target jurisdiction. This assessment holds significant weight as it directly impacts the 
accuracy and relevance of the synthesized data. Ultimately, the goal is to enhance the utility 
of the synthesized data for subsequent analysis and decision-making processes concerning 
policy, planning, and resource allocation within the target jurisdiction. 

We then propose the strategy of utilizing a known HTS as a base for comparison. By 
estimating the traditional four-step travel demand model using both the known HTS and the 
synthesized HTS, we can compare the resulting parameters to determine if the synthesized 
HTS can produce predictions similar to those derived from the known HTS. This 
comparative analysis serves as a robust validation method, allowing us to assess the 
effectiveness and reliability of the synthesized data in capturing the intricacies of travel 
behaviour within the target jurisdiction. We will employ the Greater Perth Household Travel 
Survey (HTS) as the reference dataset for contrasting with the Pseudo-HTS. This choice 
stems from the perception that the transportation patterns and characteristics in Western 
Australia (WA) bear greater resemblance to those of Greater Adelaide. 

The current design of SAM is developed from the traditional four-step travel demand model. 
This adaptation involves the utilization of ten sub-models to forecast output flows across the 
transport network. Parameters within each component are updated based on demographic, 
land use, and transport network data specific to the Greater Adelaide (GA) metropolitan 
region for the year 2021. However, for the purpose of evaluating the suitability of the 
synthesized Household Travel Survey (HTS), a streamlined approach is adopted. This 
involves the adoption of a much simpler four-step travel model with eliminating trip purpose 
segmentation and reducing the number of model components. As a result, the analysis can 
prioritize key variables and facilitate a more efficient evaluation of the Pseudo-HTS's 
performance in estimating transport network flow. Specifically, a reduced version of trip 
production, trip attraction, trip distribution, and mode choice components are employed in 
subsequent analyses.  
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3 SUMMARY OF PSEUDO HOUSEHOLD TRAVEL SURVEYS 

This section describes the Pseudo-HTSs that we comprise after the second step. In Table 5 
illustrates the number of trips transferred from each given HTS. Overall, the Pseudo-HTS at 
trip and tour level comprises 126,941 and 122,919 trips, respectively6. Southern Queensland 
and Greater Melbourne account for more than 70% of all of the transferred trips, while 
Greater Hobart and Australian Capital Territory make up the rest of around 26-27%. As 
previously discussed, at tour level, we do not translate tours that travel from 5 or more 
places. As a results, the number of trips in the Pseudo-HTS at tour level is slightly lower than 
that at trip level. In details, the total number of trips removed in the HTS tour level is 4,022, 
which represents 2%, 3%, 7% and 4% of the figures reported at trip level for SEQ, GM, TAS 
and ACT, respectively. The proportions of removed trips is comparable to the proportions of 
number of different zones that are reported in each tour made by individuals (Table 4). For 
instance, in Greater Hobart, 6% of trips made belong to tours that comprise of trips made 
between 5 or more locations. Hence, we experience 7% of trips being remove in the 
Pseudo-HTS at tour level when we translate trips from Greater Hobart. The Pseudo-HTS at 
trip level, however, does not suffer from trip lost since we transfer each trip separately.  

In Table 6, we represent more summary statistics about the Pseudo-HTS and compare with 
the original HTS from Greater Perth. In Panel A, the number of trips and number of persons 
record in the new HTS are similar with HTS at tour level is slightly lower than that at trip 
level. Hence, the trip rates per person are 3.64 and 3.54, which is quantitatively equivalent. 
Nonetheless, the trip rate per person recorded in WA HTS is 4.48 which is noticeably higher 
than the number reported earlier. In Panel B and C, we break down the HTSs based on the 
assigned mode of transportation and number of car ownership as further comparisons. The 
distribution of trips based these categories are almost identical regardless of whether it is 
origin or Pseudo-HTS. Particularly, Car is the dominance choice with around 80% of trips 
reported using this mean of transportation, followed by Walk, PT and Bicycle. Moreover, 
most individuals in these HTSs reported to have at least one car. Opposing to just a fraction 
of 1-2% possess no car. Further descriptions of the Pseudo-HTSs will be discussed in the 
next few sections where it is applicable.  

Table 5. Number of trips transferred from each given HTS. 

Jurisdiction Trip level Tour level  Trip removed in HTS 
Tour level 

% drop compare 
with trip level N % N %  

SEQ 54,548 43% 53,589 44%  959 2% 
GM 38,206 30% 37,067 30%  1,139 3% 
TAS 20,075 16% 18,763 15%  1,312 7% 
ACT 14,112 11% 13,500 11%  612 4% 
Total 126,941  122,919   4,022 

 
 

 

Table 6. Summary of HTS from WA and the Pseudo-HTSs 

Panel A. Number of trips and persons 
  Number of trips   Number of persons  Trip rate per person  
WA HTS             28,727  6,413   4.48  
Pseudo-HTS - trip level           126,941  34,869   3.64  
Pseudo-HTS - tour level           122,919  34,690   3.54  

 

 
6 The numbers are total number of trips counted for all individuals.  
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Panel B. Assigned mode summary 
 WA HTS Pseudo-HTS - trip level Pseudo-HTS - tour level 

N % N % N % 
Bicycle   435  2%                  1,918  2%                    1,676  2% 
Car 23,250  81%                100,148  79%                  85,012  78% 
PT    1,272  4%                  8,110  6%                    6,367  5% 
Walk 3,770  13%             16,765  13%                 15,855  15% 

 
Panel C. Car ownership summary 

 WA HTS Pseudo-HTS - trip level Pseudo-HTS - tour level 
N % N % N % 

0 CAR / HH      388  1%       2,543  2%             2,253  2% 
1 CAR / HH 6,618  23% 34,566  27%         30,047  27% 
2 CARS / HH   14,015  49%         60,547  48%          51,979  48% 
3+ CARS / HH 7,706  27%          29,285  23%           24,631  23% 
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4 TRIP PRODUCTION 

In the conventional four-stage modelling approach, the initial phase involves trip end 
generation, which calculates the number of origins and destinations within each Traffic 
Analysis Zone (TAZ). In prior sections of this report, we used stratified household trip 
characteristics along with zoning land-use data to estimate trip origins and destinations for 
individual trips. These trips can be classified in various ways, considering factors such as trip 
purpose, frequency, timing, distance, spatial separation between origin and destination (O-D), 
and mode of travel. In the SAM model, trips are categorized based on their purposes. 
However, for the purpose of validating the Pseudo-HTS, the model is simplified to predict the 
total number of trips generated at the individual level, regardless of their purposes. 

4.1 Model structure 

For modelling trip production, a regression function with the following was defined: 

𝑦𝑦ℎ = 𝜶𝜶 + 𝜷𝜷𝑤𝑤ℎ + 𝜸𝜸𝑟𝑟ℎ + �𝝅𝝅𝒌𝒌𝑐𝑐𝑛𝑛

3

𝑘𝑘=1

 
(3) 

 

The variables used in this equation were defined as following: 

𝑦𝑦ℎ Number of trips produced by individual ℎ 
𝑤𝑤ℎ  Dummy variable equals to one for working individual (age of 

18 – 64), zero otherwise. 
𝑟𝑟ℎ  Dummy variable equals to one for retired person (age of 

65+), zero otherwise. 
𝑐𝑐𝑛𝑛  Number of cars owned by household 𝑚𝑚 that the person ℎ 

belong to 
𝛼𝛼, 𝛽𝛽, 𝛾𝛾, and 𝜋𝜋𝑘𝑘 Model parameters to be estimated 

 

4.2 Results and discussion 

Table 7 presents a comparative analysis of trip production model results derived from 
different HTS. In dissecting the parameters, several key observations emerge. First and 
foremost, the constant terms across the models exhibit slight variations, indicating nuanced 
differences from the baseline level of trip production captured by the original WA HTS. 
Moving beyond the constants, the estimated coefficients for variables such as working age 
group, retired age group, and the number of cars per household (1 car, 2 cars, 3+ cars) vary 
between the three HTSs. The analysis reveals subtle variations in the coefficients of different 
age groups and levels of car ownership between the Original Work Activity-based 
Household Travel Survey (WA HTS) and the Pseudo Household Travel Survey (HTS) at 
both trip and tour levels. For instance, the coefficient for the working age group is slightly 
higher in the Pseudo-HTS at the trip level (1.47) compared to the Original WA HTS, but 
marginally lower at the tour level (1.35). Similarly, the coefficient for the retired age group is 
1.18 in the Original WA HTS, lower than the Pseudo-HTS at the trip level (1.32) but higher 
than the corresponding coefficient at the tour level (1.05). This trend is mirrored in the 
coefficients related to levels of car ownership. 
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From these observations, it can be inferred that the transferred HTS data at the trip level 
may overestimate trip generation by individuals, while at the tour level, it tends to 
underestimate it. However, despite these quantitative differences, the scales of variation are 
relatively small. Therefore, it is hypothesized that the transferred HTS data, despite the 
discrepancies, could serve as a viable alternative source of information for trip generation 
sub-models. 

In conclusion, the comparative analysis of trip production model results provides valuable 
insights into the nuances of transportation modeling approaches. By examining the 
variations in estimated coefficients, goodness-of-fit measures, and sample sizes, 
stakeholders in urban planning and transportation management can make informed 
decisions regarding infrastructure investments, policy interventions, and mobility solutions, 
ultimately contributing to the development of more efficient, sustainable, and resilient 
transportation systems. 

Table 7. Trip production model results 

Variable 
Original WA HTS Pseudo-HTS trip level Pseudo-HTS tour level 

est t-stat est t-stat est t-stat 
Constant 2.16 8.65 2.37 17.05 2.32 38.90 
Work 1.41 18.12 1.47 34.10 1.35 37.13 
Retired 1.18 10.82 1.32 23.20 1.05 22.15 
1 CAR / HH 1.27 5.08 1.52 10.96 1.18 19.32 
2 CARS / HH 1.43 5.80 1.71 12.50 1.55 26.86 
3+ CARS / HH 1.20 4.82 1.54 11.07 1.18 18.70 
Adjusted R2 0.05   0.04   0.04   
No. obs.          6,413         34,870         34,690    
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5 TRIP ATTRACTION 

Analysing the trip attraction model presents greater complexity compared to estimating the 
trip production model. This complexity stems from the fact that the sampling strategy in 
household travel surveys does not specifically target trip attraction locations. Consequently, 
it is common practice to estimate the parameters at an aggregated level, such as Local 
Government Areas (LGA) or Statistical Area Level 2 (SA2), rather than at a disaggregated 
spatial level like travel area zones. Typically, the model is estimated using a linear function 
incorporating variables that represent the level of activity in a zone, such as employment 
types, student enrolment at educational institutions, and households or population counts for 
various trip purposes. In this version, we employ three key variables which are population, 
employment and total enrolment at each SA2 level.  

5.1 Model structure 

In the validation step, trip attraction sub-model is using the following linear regression 
equation based on population, employment and number of enrolments: 

𝑦𝑦𝑗𝑗 = 𝜶𝜶 + 𝜷𝜷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑗𝑗 + 𝜸𝜸𝑒𝑒𝑚𝑚𝑝𝑝𝑗𝑗 + 𝝅𝝅𝑒𝑒𝑚𝑚𝑟𝑟𝑝𝑝𝑝𝑝𝑛𝑛 (4) 

The variables used in this equation were defined as following: 

𝑦𝑦𝑗𝑗 Number of trips attracted7 by zone j 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑗𝑗 Population living in zone j 
𝑒𝑒𝑚𝑚𝑝𝑝𝑗𝑗 Employment working in zone j 
𝑒𝑒𝑚𝑚𝑟𝑟𝑝𝑝𝑝𝑝𝑛𝑛 Number of enrolments in zone j 
𝛼𝛼, 𝛽𝛽, 𝛾𝛾, and 𝜋𝜋 Model parameters to be estimated 

 

5.2 Results and discussion 

The results of a trip attraction sub-model are presented in Table 8, comparing estimates 
derived from the Original WA Household Travel Survey (WA HTS) with those obtained from 
the Pseudo Household Travel Survey (HTS) at both trip and tour levels. 

Firstly, significant differences are evident across the models. The constant term in the 
Pseudo-HTS at the trip level is notably higher (88,710) compared to the Original WA HTS 
(5,313) and the Pseudo-HTS at the tour level (83,460). This substantial variation suggests 
differing baseline levels of trip attraction captured by each model, which could be attributed 
to methodological discrepancies or variations in sample representation. 

Regarding the independent variables, the coefficients associated with population, 
employment, and enrolments demonstrate distinct patterns across the models. In the 
Original WA HTS, population and employment exhibit substantial positive coefficients, 
indicating strong associations with trip attraction. However, in the Pseudo-HTS at both trip 
and tour levels, the coefficients for population and employment are substantially lower, with 
some even displaying negative values. This suggests divergent interpretations of the 

 
7 The number of trips attracted by each zone is calculated as the sum of the total number of trips multiplied by their 
corresponding trip weights for each zone. 
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impacts of population and employment on trip attraction between the Original WA HTS and 
the Pseudo-HTS models. 

Furthermore, the coefficient for enrolments, representing educational enrollments, shows 
inconsistency across the models. While the Original WA HTS presents a positive coefficient 
for enrolments, indicating a positive relationship with trip attraction, the coefficients in the 
Pseudo-HTS models are negative. This discrepancy highlights contrasting findings regarding 
the influence of educational enrollments on trip attraction between the Original WA HTS and 
the Pseudo-HTS models. 

In terms of model fit, the adjusted R-squared values vary considerably between the models. 
The Original WA HTS model exhibits a relatively high adjusted R-squared value of 0.741, 
indicating a good fit of the model to the data. In contrast, the Pseudo-HTS models at both 
trip and tour levels display substantially lower adjusted R-squared values of 0.017 and 0.03, 
respectively, suggesting poorer model fits compared to the Original WA HTS model. In brief, 
the comparison of the trip attraction sub-model results reveals notable differences between 
the Original WA HTS and the Pseudo-HTS models at both trip and tour levels. These 
differences underscore the importance of the transferred datasets. 

Table 8. Trip attraction model results 

Variables Original WA HTS Pseudo-HTS trip level Pseudo-HTS tour level 
est t-stat est t-stat est t-stat 

Constant 5,313 0.88      88,710        14,400        83,460        12,200  
Population 3.98 12.74 -1.10 0.74 -1.39 0.63 
Employment 34.70 11.45 6.10 7.21 9.10 6.09 
Enrolments 0.94 1.12 -1.43 2.00 -0.90 1.69 
Adjusted R2 0.741   0.017   0.03   
No. obs. 170   170   170   

 

The investigation delves deeper into the significant disparities observed in the estimation of 
trip attraction between the Pseudo Household Travel Surveys (HTSs) and the original Perth 
Household Travel Surveys (HTS). Another approach is employed wherein the actual number 
of trips attracted by each zone is derived and aggregated for comparative analysis.8  

In Table 9, zones such as "Perth City" emerge as the primary attractors of trips, aligning with 
expectations as these zones typically serve as centers for various activities including work, 
entertainment, and education. However, a profound shift in zonal distribution is observed 
when utilizing data from the Pseudo-HTS at the trip level, as evidenced in Table 10. Notably, 
zones such as "Winthrop," which originally attracted a mere 0.07% of total trips according to 
the original WA HTS, now ascend to the top position, capturing 4.41% of trips as per the 
Pseudo-HTS at the trip level. Similarly, other zones within the top 10 in Table 10 experience 
significantly elevated proportions of trips compared to the original WA HTS. Consequently, 
critical zones such as "Perth City" will exhibit lower numbers of trips relative to the total 
number of trips. 

Similarly, Table 11 outlines the top 10 zones based on the number of attracted trips utilizing 
the Pseudo-HTS at the tour level. The observations echo the trends observed with the 
Pseudo-HTS at the trip level. Zones such as "Midland – Guildford" and "Bateman" attract 
5,938 and 3,493 trips, respectively, constituting 4.83% and 2.84% of the total number of 

 
8 Full table with all Greater Perth zones is reported at Table 15 in the Appendix. 
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trips. However, when combined, these two zones account for merely 1.3% of the total 
number of attracted trips reported in the Original WA HTS. 

To further identifying the issue, we subsequently endeavor to find the optimal match for each 
zone within the given jurisdiction to the target jurisdiction. In this analysis, we simply utilize 
the population and employment data of each SA2 zone only, apply the Euclidean distance 
method as previously discussed, and seek to ascertain the most suitable match within the 
Greater Perth zone9. The outcome indicates that zones such as "Bateman" or "Midland – 
Guildford" in Greater Perth are more inclined to be the most suitable zones following the 
matching process for all zones from all given jurisdictions. We then conduct a comparison 
between the zones more likely to be matched and the top zones with the highest number of 
attracted trips using the two Pseudo-HTS datasets. This analysis reveals numerous 
similarities. Hence, it suggests that certain zones are overrepresented following the 
matching process, while others are undervalued. We represent the results of this process at 
Table 15 in the Appendix. 

One potential explanation for this discrepancy could be attributed to the uniform 
consideration of population, employment, and distance between zones through the 
Euclidean distance measure that we employ. When the first two criteria, namely population 
and employment, are closely aligned, the method systematically underplays the significance 
of distances between two zones. Consequently, the minimum similarity score, utilized as our 
criterion for selecting the most suitable matched pair of zones, may only reflect the suitability 
based on population and employment. This bias, then, overlook the significance of 
geographical distances in the matching process. 

In summary, this exercise represents a fundamental issue pertaining to the matching process 
of trips from given jurisdictions to the target jurisdiction. The failure to accurately reflect travel 
behavior between SA2 zones raises questions regarding the efficacy of the current 
methodology. 

Table 9: Top 10 zones of attracting trips sorted by original WA HTS 

Perth zone 
Original WA HTS Pseudo-HTS trip 

level 
Pseudo-HTS tour 

level 
N %  N %  N %  

Perth City  1,526  5.31% 1,958 1.54% 2,564 2.09% 
Subiaco - Shenton Park  591  2.06% 669 0.53% 398 0.32% 
Ellenbrook  566  1.97% 408 0.32% 60 0.05% 
Nedlands - Dalkeith - Crawley  487  1.70% 445 0.35% 603 0.49% 
Baldivis  475  1.65% 390 0.31% 712 0.58% 
Willetton  473  1.65% 811 0.64% 1206 0.98% 
Bicton - Palmyra  470  1.64% 530 0.42% 491 0.40% 
Fremantle  431  1.50% 21 0.02% 22 0.02% 
Wembley - West Leederville - 
Glendalough  405  1.41% 1,066 0.84% 1,415 1.15% 
Mindarie - Quinns Rocks - 
Jindalee  394  1.37% 293 0.23% 739 0.60% 

 

 
9 We do not consider the distance since it is simply a matching process of zone-to-zone. 
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Table 10. Top 10 zones of attracting trips sorted by Pseudo-HTS trip level. 

Perth zone 
Original WA HTS Pseudo-HTS trip 

level 
Pseudo-HTS tour 

level 
N %  N %  N %  

Winthrop  21  0.07% 5,593 4.41% 2,949 2.40% 
Midland - Guildford  340  1.18% 4,932 3.89% 5,938 4.83% 
Scarborough  176  0.61% 3,520 2.77% 1,137 0.93% 
Bateman  35  0.12% 3,518 2.77% 3,493 2.84% 
Willagee  97  0.34% 3,331 2.62% 2,878 2.34% 
Morley  368  1.28% 3,126 2.46% 1,850 1.51% 
Floreat  121  0.42% 2,781 2.19% 1,138 0.93% 
Wanneroo  163  0.57% 2,580 2.03% 1,089 0.89% 
Claremont (WA)  217  0.76% 2,460 1.94% 3,029 2.46% 
Swanbourne - Mount 
Claremont  228  0.79% 2,266 1.79% 718 0.58% 

 

Table 11. Top 10 zones of attracting trips sorted by Pseudo-HTS tour level 

Perth zone 
Original WA HTS Pseudo-HTS trip 

level 
Pseudo-HTS tour 

level 
N %  N %  N %  

Midland - Guildford  340  1.18% 4,932 3.89% 5,938 4.83% 
Bateman  35  0.12% 3,518 2.77% 3,493 2.84% 
Claremont (WA)  217  0.76% 2,460 1.94% 3,029 2.46% 
Winthrop  21  0.07% 5,593 4.41% 2,949 2.40% 
Willagee  97  0.34% 3,331 2.62% 2,878 2.34% 
Perth City  1,526  5.31% 1,958 1.54% 2,564 2.09% 
Middle Swan - Herne Hill  111  0.39% 1,974 1.56% 2,421 1.97% 
South Lake - Cockburn 
Central  200  0.70% 1,706 1.34% 2,355 1.92% 
Rivervale - Kewdale - 
Cloverdale  364  1.27% 1,758 1.39% 2,319 1.89% 

Madeley - Darch - Landsdale  216  0.75% 1,793 1.41% 2,230 1.81% 
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6 TRIP DISTRIBUTION 

The trip distribution component of the model offers insights into the flow of trips between 
geographic units (such as SA2 areas). It considers factors like travel time or cost, known as 
travel impedance, along with trip generation data to determine the distribution of trips. These 
variables play a crucial role in shaping the trip distribution function. 

6.1 Model structure 

The trip distribution sub-model employs the conventional gravity model formulation to predict 
the movement of trips from one origin to another destination. This model characterizes the 
relationship between trip flows and the characteristics of both origin and destination 
locations: 

𝑦𝑦𝑝𝑝𝑝𝑝𝑛𝑛𝑗𝑗 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑏𝑏𝑝𝑝𝑝𝑝𝑗𝑗𝑃𝑃𝑝𝑝𝑝𝑝𝑛𝑛𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗𝑓𝑓𝑝𝑝𝑝𝑝�𝐶𝐶𝑛𝑛𝑗𝑗� 

Where: 

𝑓𝑓𝑝𝑝𝑝𝑝�𝐶𝐶𝑛𝑛𝑗𝑗� = 𝐶𝐶𝑛𝑛𝑗𝑗
𝛼𝛼𝑝𝑝𝑝𝑝𝑒𝑒𝛽𝛽𝑝𝑝𝑝𝑝𝐶𝐶𝑖𝑖𝑖𝑖 

𝑦𝑦𝑝𝑝𝑝𝑝𝑛𝑛𝑗𝑗 = Number of trips from origin zone  𝑚𝑚 to destination zone 𝑗𝑗 of purpose 𝑝𝑝 made by 
households with car ownership level 𝑐𝑐 

𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 , 𝑏𝑏𝑝𝑝𝑝𝑝𝑗𝑗 =Zone-specific row and column balancing factors  

𝑃𝑃𝑝𝑝𝑝𝑝𝑛𝑛 = Number of trips produced by zone 𝑗𝑗 of purpose 𝑝𝑝 made by households with car ownership 
level 𝑐𝑐 

𝐴𝐴𝑝𝑝𝑝𝑝𝑗𝑗 =Number of trips attracted by zone 𝑗𝑗 of purpose 𝑝𝑝 made by households with car ownership 
level 𝑐𝑐 

𝑓𝑓𝑝𝑝𝑝𝑝�𝐶𝐶𝑛𝑛𝑗𝑗� =cost deterrence function for zone 𝑚𝑚 to zone 𝑗𝑗 

𝐶𝐶𝑛𝑛𝑗𝑗 =Generalized cost of travel from zone 𝑚𝑚 to zone 𝑗𝑗 

𝛼𝛼𝑝𝑝𝑝𝑝,𝛽𝛽𝑝𝑝𝑝𝑝 =  𝑐𝑐𝑝𝑝𝑒𝑒𝑓𝑓𝑓𝑓𝑚𝑚𝑐𝑐𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝 𝑏𝑏𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑚𝑚𝑏𝑏𝑟𝑟𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐  

The generalized cost utilized in trip distribution is derived from the combined expenses 
associated with daily travel via both highway and public transportation modes. This blended 
cost is computed by integrating data from car and public transport skims, following a defined 
set of equations: 

𝐶𝐶𝑛𝑛𝑗𝑗 = 𝑆𝑆𝑇𝑇𝑇𝑇 =
−1
𝜆𝜆
𝑝𝑝𝑚𝑚�𝑒𝑒−𝜆𝜆 𝑆𝑆𝑃𝑃𝑃𝑃 + 𝑒𝑒−𝜆𝜆 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻� 

𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 100𝛽𝛽(𝛼𝛼𝑇𝑇𝑆𝑆𝐻𝐻𝑇𝑇 + 𝛼𝛼𝑇𝑇𝑆𝑆𝐻𝐻𝑇𝑇) 

𝑆𝑆𝑃𝑃𝑇𝑇 = 100𝛽𝛽(𝑆𝑆𝑃𝑃𝑆𝑆)  

Where: 

𝑆𝑆𝑇𝑇𝑇𝑇 = Output Blended Skims used in Trip Distribution (output) 

𝑆𝑆𝐻𝐻𝑇𝑇 = Highway Travel Time Skims (input) 
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𝑆𝑆𝐻𝐻𝑇𝑇 = Highway Travel Distance Skims (input) 

𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  = Highway Skim Costs (working matrix) 

 

𝑆𝑆𝑃𝑃𝑆𝑆  = Public Transport Time Skims (input) 

𝑆𝑆𝑃𝑃𝑇𝑇  = Public Skim Costs (working matrix) 

𝛼𝛼𝑇𝑇 = Assignment Time Factor = 1 

𝛼𝛼𝑇𝑇 = Assignment Distance Factor = 0.505 

𝛽𝛽 = Mode Choice Value of Time = 0.188 ($/Min) 

𝜆𝜆 = calibrated constant = 0.05 

 

Only the coefficients of the deterrence function 𝛼𝛼𝑝𝑝𝑝𝑝 and 𝛽𝛽𝑝𝑝𝑝𝑝 need to be estimated. Employing 
the blended cost methodology, cost bands are established in one-dollar increments, and the 
allocation of trips within each band is determined using data from household travel surveys. 
Subsequently, a model is developed with the subsequent general specification: 

  
𝑦𝑦𝑝𝑝𝑝𝑝𝑛𝑛 = 𝑘𝑘𝑝𝑝𝑝𝑝𝐶𝐶𝑛𝑛

𝛼𝛼𝑝𝑝𝑝𝑝𝑒𝑒𝛽𝛽𝑝𝑝𝑝𝑝𝐶𝐶𝑛𝑛 

Where: 

𝑦𝑦𝑝𝑝𝑝𝑝𝑛𝑛 = Number of trips of purpose 𝑝𝑝 made by households with car ownership level 𝑐𝑐 with 
generalised cost in cost band n 

𝐶𝐶𝑛𝑛 = 𝑀𝑀𝑒𝑒𝑝𝑝𝑚𝑚 generalized cost of travel for cost band n 

6.2 Results and discussion 

Table 12 and Figure 7 present estimated values of alpha and beta coefficients derived from 
three HTS datasets. These coefficients are utilized in the deterrence function, which models 
the number of trips for a specific purpose made by households with varying car ownership 
levels and generalized travel costs. The alpha coefficient represents the sensitivity of trip 
numbers to changes in generalized travel cost, while the beta coefficient reflects the rate of 
decay in trip numbers as travel cost increases. In details, across the different HTS datasets, 
there are variations in the estimated values of both alpha and beta coefficients. For instance, 
comparing the alpha coefficients, we observe that the values range from 4.03 in the original 
WA HTS to 3.12 in the Pseudo-HTS at the trip level and 4.78 in the Pseudo-HTS at the tour 
level. Similarly, for the beta coefficients, the values vary from -1.25 in the original WA HTS to 
-0.76 in the Pseudo-HTS at the trip level and -1.91 in the Pseudo-HTS at the tour level. 
These variations indicate that the sensitivity of trip numbers to changes in generalized travel 
cost and the rate of decay in trip numbers with increasing travel cost differ across the HTS 
datasets. Nonetheless, these estimated parameters are quantitatively comparable across 
the different HTS datasets. This suggests that while there may be slight differences in the 
magnitude of the coefficients, the overall relationships between generalized travel cost and 
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trip numbers remain consistent across the datasets. Such comparability strengthens the 
applicability of the Pseudo-HTSs.  

 

Table 12. Trip distribution results 

   Original WA HTS   Pseudo-HTS trip level   Pseudo-HTS tour level  
 Alpha              4.03   3.12            4.78  
 Beta  -1.25  -0.76  -1.91  

 

 

Figure 7. Estimated deterrence functions. 
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7 MODE CHOICE 

The mode choice sub-model serves to forecast the transportation mode preferences for 
individuals or groups. To accurately capture diverse transportation options, including both 
motorized and non-motorized alternatives, the mode choice splits should reflect a 
comprehensive range of options. This ensures a more realistic representation of multimodal 
transportation choices, accommodating varying preferences and needs within the 
transportation network. 

7.1 Model structure 

In SAM, the mode choice model comprises six alternatives, with three related to cars at 
different occupancy levels, and the remaining three representing public transport, cycling, 
and walking. Consistent with this approach, we maintain the same structure in this stage. 
However, unlike trip purpose segmentation, we do not differentiate between purposes and 
estimate a single mode choice model for each of the household travel surveys (HTSs).  

Other assumptions, value of in-vehicle time, ratio of waiting time to in-vehicle time, etc.. 
implemented in the stage II remain unchanged. 

The utility functions for each alternative has the following form: 

𝑝𝑝𝑛𝑛𝑛𝑛𝐶𝐶𝐻𝐻𝑛𝑛 = 𝜶𝜶𝐶𝐶𝐻𝐻𝑛𝑛 + 𝜷𝜷𝑚𝑚𝑖𝑖𝑝𝑝𝐶𝐶𝐻𝐻𝑛𝑛 + �
𝜷𝜷 × 0.6

17.4
� 𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝐶𝐶𝐻𝐻𝑛𝑛 

𝑝𝑝𝑛𝑛𝑛𝑛𝑃𝑃𝑇𝑇 = 𝜶𝜶𝑃𝑃𝑇𝑇 + 𝜷𝜷�𝑚𝑚𝑖𝑖𝑝𝑝𝑃𝑃𝑇𝑇 + (𝟏𝟏.𝟓𝟓 × 𝑤𝑤𝑘𝑘𝑝𝑝𝑃𝑃𝑇𝑇) + (𝟐𝟐 × 𝑤𝑤𝑝𝑝𝑝𝑝𝑃𝑃𝑇𝑇) + (𝟓𝟓 × 𝑝𝑝𝑟𝑟𝑝𝑝𝑚𝑚𝑐𝑐𝑃𝑃𝑇𝑇)� + �
𝜷𝜷 × 0.6

17.4
� 𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑃𝑃𝑇𝑇 

𝑝𝑝𝑛𝑛𝑛𝑛𝐻𝐻𝐶𝐶𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜶𝜶𝐻𝐻𝐶𝐶𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜷𝜷𝑝𝑝𝐻𝐻𝐶𝐶𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛  
 

Where: 

𝑝𝑝𝑛𝑛𝑛𝑛𝑗𝑗  = Utility of alternative 𝑗𝑗 for individual 𝑚𝑚 and trip 𝑝𝑝 

α = 𝐴𝐴𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑖𝑖𝑒𝑒 𝑐𝑐𝑝𝑝𝑒𝑒𝑐𝑐𝑚𝑚𝑓𝑓𝑚𝑚𝑐𝑐 𝑐𝑐𝑝𝑝𝑚𝑚𝑐𝑐𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝  

𝑚𝑚𝑖𝑖𝑝𝑝𝑗𝑗 = 𝐼𝐼𝑚𝑚 − 𝑖𝑖𝑒𝑒ℎ𝑚𝑚𝑐𝑐𝑝𝑝𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝 𝑝𝑝𝑚𝑚𝑚𝑚𝑒𝑒 𝑓𝑓𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑖𝑖𝑒𝑒 𝐽𝐽  

𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝𝑗𝑗 = 𝑝𝑝𝑟𝑟𝑝𝑝𝑖𝑖𝑒𝑒𝑝𝑝 𝑐𝑐𝑝𝑝𝑐𝑐𝑝𝑝 𝑓𝑓𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑖𝑖𝑒𝑒 𝐽𝐽  

𝑤𝑤𝑘𝑘𝑝𝑝𝑗𝑗 = 𝑊𝑊𝑝𝑝𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚𝑊𝑊 𝑝𝑝𝑚𝑚𝑚𝑚𝑒𝑒 𝑓𝑓𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑖𝑖𝑒𝑒 𝐽𝐽  

𝑤𝑤𝑝𝑝𝑝𝑝𝑗𝑗 = 𝑊𝑊𝑝𝑝𝑚𝑚𝑝𝑝 𝑝𝑝𝑚𝑚𝑚𝑚𝑒𝑒 𝑓𝑓𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑖𝑖𝑒𝑒 𝐽𝐽  

𝑝𝑝𝑟𝑟𝑝𝑝𝑚𝑚𝑐𝑐𝑗𝑗  = 𝑁𝑁𝑝𝑝𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 𝑝𝑝𝑓𝑓 𝑝𝑝𝑟𝑟𝑝𝑝𝑚𝑚𝑐𝑐𝑓𝑓𝑒𝑒𝑟𝑟𝑐𝑐 𝑓𝑓𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑖𝑖𝑒𝑒 𝐽𝐽  

 

7.2 Results and discussion 

We report the estimation results in Table 13. Comparing the coefficients estimated using the 
three datasets reveals minor differences in their magnitudes across various variables. For 
instance, the magnitude of the coefficient values for "BICYCLE_MC" differs slightly between 
the datasets, with the highest absolute value observed in the Original WA HTS (-3.136), 
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followed by the Pseudo-HTS at the tour level (-3.000), and then the Pseudo-HTS at the trip 
level (-2.973). 

Similarly, coefficients associated with car-related variables such as "B_COST" (car cost) and 
"B_TIME" (car travel time), also exhibit consistent negative values across all datasets, 
indicating decreases in utility with increases in these factors. Again, there are minimal 
variations in the magnitude of these coefficients across the datasets. On the contrary, 
estimated parameters for “B_WAIT_TIME” and “B_WALK_TIME” show distinguished 
differences between the original HTS of WA and our Pseudo-HTSs. In details, 
“B_WAIT_TIME” and “B_WALK_TIME” of the original HTS of WA are -0.465 and -2.564, 
which are five times larger in absolute term on average. The discrepancies are also the 
results from the higher concentration of certain zones after the matching process, which 
brings bias to the wait time and walk time for public transport.  

For variables related to public transport (PT_MC) and walking (WALK_MC), the coefficients 
show mixed patterns across the datasets. While the coefficients for public transport are 
negative across all datasets, suggesting decreases in utility for this mode choice. The 
coefficient for walking is positive values observed in the Original WA HTS (0.406) but 
negative in the Pseudo-HTS at both trip level (-1.149) and tour level (-0.746). Overall, while 
the general trends in coefficient signs are consistent across the datasets with less variations 
in the magnitudes of these coefficients. 

 

Table 13. Mode choice results 

Variables 
 Original WA HTS   Pseudo-HTS trip level   Pseudo-HTS tour level  

Value Rob. t-test Value Rob. t-test Value Rob. t-test 
BICYCLE_MC -3.136 -33.163 -2.973 -70.252 -3.000 -64.379 
B_COST -0.483 -18.123 -0.361 -41.405 -0.331 -29.591 
B_TIME -2.916 -8.856 -2.150 -18.495 -2.145 -16.159 
B_WAIT_TIME -0.465 -4.487 -0.177 -3.721 0.097 1.958 
B_WALK_TIME -2.564 -12.009 -0.196 -4.321 -0.598 -11.280 
OCC2_MC -1.018 -58.564 -1.057 -112.617 -1.019 -100.622 
OCC3p_MC -1.367 -78.902 -1.333 -145.802 -1.268 -130.671 
PT_MC -0.704 -6.131 -1.472 -37.510 -1.730 -37.818 
WALK_MC 0.406 3.430 -1.149 -30.477 -0.746 -20.852 
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8 CONCLUSIONS 

This study highlights the obstacles inherent in the calibration and validation of travel demand 
models (TDMs), particularly for smaller urban areas with limited resources. Conventional 
methodologies that require the collection of primary data can often be prohibitively 
expensive, and have led planners to seek alternative strategies, such as leveraging datasets 
from comparable jurisdictions to estimate model parameters and/or adopting parameters 
from established literature values. The transferred model parameters can subsequently be 
used to generate a pseudo-HTS for the target region using microsimulation methods (e.g. 
Greaves, 2000; Stopher et al., 2003; Greaves, 2006). In general, findings from these and 
other related studies in the broader literature on the transferability of travel demand models 
indicate that the method is sufficiently accurate in most cases at generating travel 
behaviours for the target region. However, the method can only generate behaviours 
specified explicitly as dependent variables in the travel demand models. For example, if the 
mode choice sub-model excludes modes such as taxis, ridesharing and e-scooters, then the 
model cannot predict these mode choice behaviours, and consequently, use of these modes 
is not captured by a pseudo-HTS generated using this method. 

To address these challenges, our research introduces a novel non-parametric technique for 
transferring individual trips between HTSs. We hypothesise that a significant proportion of 
variance in travel behaviour decisions within an urban area can be explained by the relative 
location of people and jobs within that area. For example, imagine an individual living in a 
low-density and sparsely populated suburb in Tasmania, 10 km away from the Hobart CBD, 
who commutes to the CBD every day by car. If this individual were transferred to the Perth 
metropolitan area, such that they lived roughly 10 km away from the Perth CBD, our non-
parametric framework would predict that the individual commutes to the Perth CBD every 
day by car. Travel behaviours observed for other individuals belonging to other jurisdictions 
can similarly be transferred to the target region, and the collection of trips thus transferred 
can be treated as a ‘pseudo-HTS’ for the target region. 

This is admittedly a naïve assumption that does not control for differences in other mitigating 
factors between the source and target regions, such as public transport network, road 
congestion and climate. In principle, one could make the non-parametric framework more 
sophisticated to account for differences in each of these variables. However, that might 
necessitate using a parametric framework of sorts similar to the original approach used by, 
among others, Stopher et al. (2003), as a parsimonious solution to the problem of how to 
incorporate a large number of explanatory variables. The benefit of the non-parametric 
framework is that the transferred behaviours are not constrained by model assumptions. If 
the individual in our example above took a taxi to work instead in Hobart, then they would be 
assumed to take a taxi to work if they were living in Perth at a comparable distance away 
from the CBD as they were in Hobart.   

We applied the framework to generate a pseudo-HTS for Greater Perth (GP), using HTS 
data collected in other jurisdictions. We compare inferences from the inferred pseudo-HTS 
with those from the actual HTS conducted in GP to validate the methodology. We use GP as 
our target region instead of GA because recent HTS data is available for the former (which is 
used to validate the methodology). 

For TDM sub-models that are estimated at a trip or individual-level, our approach appears to 
perform reasonably well. For example, for the trip production sub-model, the pseudo-HTS 
tends to exhibit slight variations in constant terms and estimated coefficients for age groups 
and car ownership levels between the original WA HTS and the pseudo-HTS. Despite these 
quantitative differences suggesting potential overestimation at the trip level and 
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underestimation at the tour level in the transferred HTS data, they remain relatively small, 
indicating the viability of the pseudo-HTS as an alternative data source for trip generation 
sub-models. Variations are also observed in coefficients of the trip distribution sub-model 
across the datasets. Again, despite these variations, the estimated parameters are 
quantitatively comparable across the datasets, suggesting consistent relationships between 
generalized travel cost and trip numbers. Next, mode choice model reveal minor variations 
in coefficient magnitudes across variables among the three datasets, also suggesting that 
the pseudo-HTS confidently predicts the utility of transport mode in the target jurisdiction.  

However, sub-models estimated at a more aggregated level may potentially be biased due 
to limitations inherent in our approach. Firstly, transferring trips at the individual level without 
carefully considering the relationship between zones could result in over-matching for certain 
zones and under-matching for others. Secondly, this report relies solely on one measure of 
similarity – Euclidean distance, which may diminish the importance of distance measures 
while overemphasizing zonal characteristics such as population and employment. Lastly, our 
approach is constrained to using weights to assess the impact of each trip and tour made by 
individuals, as it is challenging to simultaneously incorporate varying weights for persons, 
trips, tours, zones, and similarities. 
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9 APPENDIXES 

 

Table 14. Count of trips attracted to each of Greater Perth zones from the three HTSs. 

Perth zone 
Original WA HTS Pseudo-HTS trip 

level 
Pseudo-HTS tour 

level 
N %  N %  N %  

Alexander Heights - 
Koondoola 48 0.17% 275 0.22% 314 0.26% 

Alkimos - Eglinton 42 0.15% 57 0.04% 62 0.05% 
Applecross - Ardross 271 0.94% 1698 1.34% 1626 1.32% 
Armadale - Wungong - 
Brookdale 304 1.06% 159 0.13% 243 0.20% 

Balcatta - Hamersley 242 0.84% 642 0.51% 813 0.66% 
Baldivis 475 1.65% 390 0.31% 712 0.58% 
Balga - Mirrabooka 172 0.60% 431 0.34% 622 0.51% 
Ballajura 54 0.19% 757 0.60% 603 0.49% 
Banjup 182 0.63% 420 0.33% 601 0.49% 
Bassendean - Eden Hill - 
Ashfield 126 0.44% 527 0.42% 798 0.65% 

Bateman 35 0.12% 3518 2.77% 3493 2.84% 
Bayswater - Embleton - 
Bedford 283 0.99% 1316 1.04% 2142 1.74% 

Beckenham - Kenwick - 
Langford 224 0.78% 1125 0.89% 503 0.41% 

Beechboro 252 0.88% 1318 1.04% 487 0.40% 
Beeliar - Wattleup 53 0.18% 400 0.32% 413 0.34% 
Belmont - Ascot - Redcliffe 99 0.34% 1623 1.28% 238 0.19% 
Bentley - Wilson - St James 255 0.89% 1209 0.95% 1326 1.08% 
Bertram - Wellard (West) 148 0.52% 107 0.08% 135 0.11% 
Bibra Industrial 83 0.29% 88 0.07% 133 0.11% 
Bibra Lake 9 0.03% 162 0.13% 150 0.12% 
Bicton - Palmyra 470 1.64% 530 0.42% 491 0.40% 
Booragoon 191 0.66% 798 0.63% 1241 1.01% 
Bull Creek 117 0.41% 1051 0.83% 1354 1.10% 
Bullsbrook 45 0.16% 109 0.09% 156 0.13% 
Butler - Merriwa - Ridgewood 188 0.65% 234 0.18% 330 0.27% 
Byford 128 0.45% 232 0.18% 283 0.23% 
Calista 89 0.31% 184 0.14% 288 0.23% 
Camillo - Champion Lakes 122 0.42% 697 0.55% 881 0.72% 
Canning Vale - East 235 0.82% 465 0.37% 747 0.61% 
Canning Vale - West 165 0.57% 557 0.44% 724 0.59% 
Canning Vale Commercial 105 0.37% 121 0.10% 193 0.16% 
Cannington - Queens Park 234 0.81% 858 0.68% 738 0.60% 
Carabooda - Pinjar 7 0.02% 14 0.01% 5 0.00% 
Carramar 308 1.07% 270 0.21% 740 0.60% 
Casuarina - Wandi 65 0.23% 525 0.41% 601 0.49% 
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Chidlow 9 0.03% 164 0.13% 171 0.14% 
City Beach 35 0.12% 1750 1.38% 2076 1.69% 
Claremont (WA) 217 0.76% 2460 1.94% 3029 2.46% 
Clarkson 303 1.05% 261 0.21% 451 0.37% 
Como 205 0.71% 874 0.69% 1069 0.87% 
Coogee 59 0.21% 296 0.23% 328 0.27% 
Coolbellup 144 0.50% 424 0.33% 502 0.41% 
Cooloongup 168 0.58% 340 0.27% 735 0.60% 
Cottesloe 282 0.98% 1295 1.02% 1078 0.88% 
Craigie - Beldon 92 0.32% 286 0.23% 259 0.21% 
Currambine - Kinross 157 0.55% 185 0.15% 264 0.21% 
Dawesville - Bouvard 100 0.35% 21 0.02% 30 0.02% 
Dianella 308 1.07% 614 0.48% 869 0.71% 
Duncraig 279 0.97% 920 0.72% 1345 1.09% 
East Fremantle 131 0.46% 817 0.64% 1202 0.98% 
East Victoria Park - Carlisle 281 0.98% 505 0.40% 718 0.58% 
Ellenbrook 566 1.97% 408 0.32% 60 0.05% 
Falcon - Wannanup 139 0.48% 88 0.07% 140 0.11% 
Floreat 121 0.42% 2781 2.19% 1138 0.93% 
Forrestdale - Harrisdale - 
Piara Waters 175 0.61% 248 0.20% 390 0.32% 

Forrestfield - Wattle Grove 211 0.73% 215 0.17% 261 0.21% 
Fremantle 431 1.50% 21 0.02% 22 0.02% 
Fremantle - South 356 1.24% 344 0.27% 471 0.38% 
Gidgegannup 114 0.40% 204 0.16% 233 0.19% 
Girrawheen 52 0.18% 556 0.44% 688 0.56% 
Glen Forrest - Darlington 58 0.20% 538 0.42% 609 0.50% 
Gosnells 151 0.53% 446 0.35% 581 0.47% 
Greenfields 139 0.48% 241 0.19% 196 0.16% 
Greenwood - Warwick 116 0.40% 509 0.40% 607 0.49% 
Halls Head - Erskine 236 0.82% 209 0.16% 469 0.38% 
Hamilton Hill 82 0.29% 302 0.24% 393 0.32% 
Hazelmere - Guildford 57 0.20% 1122 0.88% 1186 0.97% 
Heathridge - Connolly 24 0.08% 105 0.08% 214 0.17% 
Helena Valley - Koongamia 15 0.05% 1592 1.25% 1801 1.47% 
Henderson 28 0.10% 115 0.09% 133 0.11% 
Herdsman 5 0.02% 104 0.08% 73 0.06% 
High Wycombe 164 0.57% 290 0.23% 495 0.40% 
Hillarys 94 0.33% 467 0.37% 472 0.38% 
Hope Valley - Postans 2 0.01% 41 0.03% 45 0.04% 
Huntingdale - Southern River 205 0.71% 1563 1.23% 483 0.39% 
Iluka - Burns Beach 42 0.15% 157 0.12% 201 0.16% 
Innaloo - Doubleview 228 0.79% 1007 0.79% 968 0.79% 
Jandakot 108 0.38% 1499 1.18% 1651 1.34% 
Joondalup - Edgewater 345 1.20% 250 0.20% 298 0.24% 



Data transferability | 
 

 
 
 

 

34 

34 

Kalamunda - Maida Vale - 
Gooseberry Hill 147 0.51% 373 0.29% 394 0.32% 

Karrinyup - Gwelup - Carine 391 1.36% 724 0.57% 1214 0.99% 
Kelmscott 188 0.65% 269 0.21% 326 0.27% 
Kewdale Commercial 26 0.09% 172 0.14% 121 0.10% 
Kings Park (WA) 33 0.11% 131 0.10% 127 0.10% 
Kingsley 59 0.21% 1836 1.45% 368 0.30% 
Kwinana Industrial 41 0.14% 121 0.10% 89 0.07% 
Leeming 50 0.17% 327 0.26% 482 0.39% 
Lesmurdie - Bickley - Carmel 236 0.82% 146 0.12% 282 0.23% 
Lockridge - Kiara 130 0.45% 668 0.53% 950 0.77% 
Maddington - Orange Grove - 
Martin 331 1.15% 199 0.16% 285 0.23% 

Madeley - Darch - Landsdale 216 0.75% 1793 1.41% 2230 1.81% 
Malaga 89 0.31% 112 0.09% 113 0.09% 
Malmalling - Reservoir 2 0.01%  0.00% 1 0.00% 
Mandurah 352 1.23% 1033 0.81% 622 0.51% 
Mandurah - East 50 0.17% 324 0.26% 431 0.35% 
Mandurah - North 174 0.61% 145 0.11% 194 0.16% 
Mandurah - South 48 0.17% 281 0.22% 403 0.33% 
Manning - Waterford 69 0.24% 989 0.78% 1282 1.04% 
Marangaroo 42 0.15% 430 0.34% 425 0.35% 
Maylands 160 0.56% 853 0.67% 1153 0.94% 
Melaleuca - Lexia 1 0.00% 16 0.01% 16 0.01% 
Melville 286 1.00% 465 0.37% 683 0.56% 
Middle Swan - Herne Hill 111 0.39% 1974 1.56% 2421 1.97% 
Midland - Guildford 340 1.18% 4932 3.89% 5938 4.83% 
Mindarie - Quinns Rocks - 
Jindalee 394 1.37% 293 0.23% 739 0.60% 

Morley 368 1.28% 3126 2.46% 1850 1.51% 
Mosman Park - Peppermint 
Grove 87 0.30% 645 0.51% 877 0.71% 

Mount Hawthorn - Leederville 173 0.60% 1426 1.12% 1718 1.40% 
Mount Lawley - Inglewood 311 1.08% 480 0.38% 691 0.56% 
Mount Nasura - Mount 
Richon - Bedfordale 77 0.27% 235 0.19% 305 0.25% 

Mullaloo - Kallaroo 82 0.29% 1996 1.57% 427 0.35% 
Mundaring 333 1.16% 144 0.11% 212 0.17% 
Mundijong 165 0.57% 254 0.20% 414 0.34% 
Murdoch - Kardinya 305 1.06% 777 0.61% 865 0.70% 
Nedlands - Dalkeith - Crawley 487 1.70% 445 0.35% 603 0.49% 
Neerabup National Park 3 0.01% 11 0.01% 10 0.01% 
Nollamara - Westminster 88 0.31% 672 0.53% 957 0.78% 
Noranda 46 0.16% 680 0.54% 810 0.66% 
North Coogee 57 0.20% 1107 0.87% 1207 0.98% 
North Perth 57 0.20% 926 0.73% 1353 1.10% 
Ocean Reef 67 0.23% 679 0.54% 456 0.37% 
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O'Connor (WA) 48 0.17% 252 0.20% 193 0.16% 
Osborne Park Industrial 194 0.68% 789 0.62% 851 0.69% 
Padbury 109 0.38% 392 0.31% 530 0.43% 
Parkwood - Ferndale - 
Lynwood 147 0.51% 220 0.17% 308 0.25% 

Parmelia - Orelia 74 0.26% 264 0.21% 431 0.35% 
Perth Airport 136 0.47% 244 0.19% 257 0.21% 
Perth City 1526 5.31% 1958 1.54% 2564 2.09% 
Pinjarra 55 0.19% 53 0.04% 97 0.08% 
Port Kennedy 95 0.33% 106 0.08% 170 0.14% 
Riverton - Shelley - 
Rossmoyne 199 0.69% 819 0.65% 530 0.43% 

Rivervale - Kewdale - 
Cloverdale 364 1.27% 1758 1.39% 2319 1.89% 

Rockingham 341 1.19% 98 0.08% 132 0.11% 
Rockingham Lakes 11 0.04% 9 0.01% 7 0.01% 
Roleystone 45 0.16% 167 0.13% 224 0.18% 
Safety Bay - Shoalwater 114 0.40% 134 0.11% 109 0.09% 
Scarborough 176 0.61% 3520 2.77% 1137 0.93% 
Serpentine - Jarrahdale 66 0.23% 73 0.06% 87 0.07% 
Seville Grove 60 0.21% 276 0.22% 323 0.26% 
Singleton - Golden Bay - 
Secret Harbour 84 0.29% 199 0.16% 249 0.20% 

Sorrento - Marmion 81 0.28% 411 0.32% 587 0.48% 
South Lake - Cockburn 
Central 200 0.70% 1706 1.34% 2355 1.92% 

South Perth - Kensington 262 0.91% 1166 0.92% 363 0.30% 
Spearwood 192 0.67% 2029 1.60% 427 0.35% 
Stirling - Osborne Park 183 0.64% 1053 0.83% 365 0.30% 
Stratton - Jane Brook 106 0.37% 591 0.47% 739 0.60% 
Subiaco - Shenton Park 591 2.06% 669 0.53% 398 0.32% 
Success - Hammond Park 109 0.38% 687 0.54% 1300 1.06% 
Swan View - Greenmount - 
Midvale 158 0.55% 1258 0.99% 1598 1.30% 

Swanbourne - Mount 
Claremont 228 0.79% 2266 1.79% 718 0.58% 

Tapping - Ashby - Sinagra 42 0.15% 200 0.16% 272 0.22% 
The Vines 94 0.33% 197 0.16% 285 0.23% 
Thornlie 350 1.22% 1212 0.96% 563 0.46% 
Trigg - North Beach - 
Watermans Bay 88 0.31% 339 0.27% 506 0.41% 

Tuart Hill - Joondanna 123 0.43% 839 0.66% 870 0.71% 
Two Rocks 78 0.27% 24 0.02% 124 0.10% 
Victoria Park - Lathlain - 
Burswood 223 0.78% 462 0.36% 340 0.28% 

Waikiki 229 0.80% 470 0.37% 174 0.14% 
Wanneroo 163 0.57% 2580 2.03% 1089 0.89% 
Warnbro 66 0.23% 89 0.07% 172 0.14% 
Welshpool 95 0.33% 99 0.08% 95 0.08% 
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Wembley - West Leederville - 
Glendalough 405 1.41% 1066 0.84% 1415 1.15% 

Wembley Downs - 
Churchlands - Woodlands 214 0.74% 1439 1.13% 905 0.74% 

Willagee 97 0.34% 3331 2.62% 2878 2.34% 
Willetton 473 1.65% 811 0.64% 1206 0.98% 
Winthrop 21 0.07% 5593 4.41% 2949 2.40% 
Woodvale 196 0.68% 1244 0.98% 607 0.49% 
Yanchep 127 0.44% 29 0.02% 36 0.03% 
Yangebup 15 0.05% 691 0.54% 928 0.76% 
Yokine - Coolbinia - Menora 142 0.49% 1305 1.03% 1470 1.20% 

Total  28,727   126,897   122,886    
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Table 15. Number of zones in Greater Perth after transferring zones in other jurisdictions using 
only population and employment. 

Matched zone GM SEQ TAS ACT Total 
Two Rocks 2 2 2 22 28 
Bateman 4 8 4 5 21 
Morley 13 2   15 
Woodvale 7 7   14 
City Beach 4 9 1  14 
Claremont (WA) 4 7  2 13 
Midland - Guildford 4 7 1  12 
Serpentine - Jarrahdale 1 5 1 5 12 
South Lake - Cockburn Central 7 4   11 
Success - Hammond Park 5 5  1 11 
Mundijong 1 6 1 3 11 
Rivervale - Kewdale - Cloverdale 8 2   10 
Middle Swan - Herne Hill 2 6 2  10 
Mandurah 5 4   9 
Willagee 1 3 2 3 9 
Madeley - Darch - Landsdale 7 1   8 
Halls Head - Erskine 7 1   8 
Karrinyup - Gwelup - Carine 7 1   8 
Cottesloe 5 2 1  8 
Helena Valley - Koongamia 2 1  5 8 
Bayswater - Embleton - Bedford 7    7 
Bentley - Wilson - St James 7    7 
Willetton 6 1   7 
Sorrento - Marmion 4 3   7 
Swan View - Greenmount - Midvale 3 3 1  7 
Cooloongup 2 4 1  7 
Chidlow 1 4 1 1 7 
Mandurah - East 1 3  3 7 
Jandakot 1 1  5 7 
Tapping - Ashby - Sinagra 5 1   6 
Gosnells 5 1   6 
Yokine - Coolbinia - Menora 4 2   6 
Carramar 4 2   6 
Calista 3 2 1  6 
Winthrop 1 3 1 1 6 
Trigg - North Beach - Watermans Bay 1 3 1 1 6 
Bullsbrook 1 3  2 6 
Bassendean - Eden Hill - Ashfield 4 1   5 
North Perth 4 1   5 
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Scarborough 3 2   5 
Mindarie - Quinns Rocks - Jindalee 3 2   5 
Clarkson 3 2   5 
Greenwood - Warwick 3 2   5 
O'Connor (WA) 3   2 5 
Parmelia - Orelia 2 3   5 
Mount Hawthorn - Leederville 1 4   5 
Innaloo - Doubleview 4    4 
Canning Vale - West 3  1  4 
Maddington - Orange Grove - Martin 3 1   4 
Manning - Waterford 3 1   4 
Wembley Downs - Churchlands - Woodlands 3 1   4 
Canning Vale - East 3 1   4 
Dianella 3 1   4 
High Wycombe 3 1   4 
East Victoria Park - Carlisle 3 1   4 
Kingsley 2 2   4 
Falcon - Wannanup 2 2   4 
Duncraig 2 2   4 
Warnbro 2 2   4 
Lesmurdie - Bickley - Carmel 2 2   4 
Booragoon 2 2   4 
Como 2 2   4 
Mount Nasura - Mount Richon - Bedfordale 1 3   4 
Melville 1 3   4 
Hope Valley - Postans 1   3 4 
Butler - Merriwa - Ridgewood 3    3 
Port Kennedy 3    3 
Nedlands - Dalkeith - Crawley 3    3 
Wanneroo 3    3 
Hillarys 3    3 
Balga - Mirrabooka 3    3 
Cannington - Queens Park 3    3 
Rockingham 3    3 
Mandurah - South 2  1  3 
Huntingdale - Southern River 2 1   3 
Tuart Hill - Joondanna 2 1   3 
Waikiki 2 1   3 
Fremantle - South 2 1   3 
Maylands 2 1   3 
Swanbourne - Mount Claremont 1 2   3 
Greenfields 1 2   3 
Girrawheen 1 2   3 
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Safety Bay - Shoalwater 1 2   3 
Roleystone 1 2   3 
Mullaloo - Kallaroo 1 2   3 
Osborne Park Industrial 1 1  1 3 
Perth Airport 1 1  1 3 
Forrestdale - Harrisdale - Piara Waters 2    2 
Riverton - Shelley - Rossmoyne 2    2 
Thornlie 2    2 
Alexander Heights - Koondoola 2    2 
Armadale - Wungong - Brookdale 2    2 
Padbury 2    2 
Beechboro 2    2 
Victoria Park - Lathlain - Burswood 2    2 
Nollamara - Westminster 2    2 
Bull Creek 2    2 
Spearwood 2    2 
Parkwood - Ferndale - Lynwood 2    2 
Subiaco - Shenton Park 2    2 
Mandurah - North 1 1   2 
Perth City 1 1   2 
Wembley - West Leederville - Glendalough 1 1   2 
Forrestfield - Wattle Grove 1 1   2 
Bicton - Palmyra 1 1   2 
Byford 1 1   2 
Murdoch - Kardinya 1 1   2 
Singleton - Golden Bay - Secret Harbour 1    1 
Hamilton Hill 1    1 
Belmont - Ascot - Redcliffe 1    1 
Bertram - Wellard (West) 1    1 
Ellenbrook 1    1 
Joondalup - Edgewater 1    1 
Malaga 1    1 
Balcatta - Hamersley 1    1 
Mount Lawley - Inglewood 1    1 
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