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Executive Summary

Animal–Vehicle Collisions (AVCs) present a significant threat to wildlife conservation and hu-

man safety, particularly in wildlife-rich areas like regional Australia. Conventional mitigation

measures, such as wildlife crossings and fencing, are often limited by geographical and finan-

cial constraints. While driver awareness campaigns may raise awareness about the general

risk of AVCs, they are not and cannot be targeted to context- or time-specific instances where

a motorist must take action because an animal is on or near the road. Thus, there is a critical

need for real-time interventions that inform motorists of an impending hazard in terms of an

animal having been detected on or near the road.

RGB Cam
Thermal Cam

Driver Behaviour Analysis

Animal Detection System

Variable Message Sign

Vehicle Speed Sensors

Self-Training AI Model

Figure 1.: An overview of the developed LAARMA system.

This collaborative study, conducted by The University of Sydney, Queensland University

of Technology, and the Queensland Government’s Department of Transport and Main Roads,

developed a novel Large Animal Activated Roadside Monitoring and Alert (LAARMA) system,

as presented in Figure 1. The LAARMA system integrates several advanced technologies, in-

cluding a multi-sensor detection suite, a machine learning-based animal detection algorithm,

and purpose-devised Variable Message Sign (VMS) messaging. Specifically, the system mon-

itors roadside large animals, in particular, cassowaries, at distances of up to 200 metres via a

relatively cost-effective suite of perception sensors in various weather conditions. Upon de-

tecting a cassowary on or near the road, the system immediately triggers a warning message
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to be displayed on a roadside VMS. The messaging was purposefully devised and sought to

ensure drivers’ awareness of the alert as a real-time hazard. An innovative feature of the an-

imal detection in the LAARMA system was its self-supervised learning pipeline, which enabled

the system to automatically label real-world animal data collected during field operations,

continually improving its accuracy and reliability without extensive human supervision. This

approach has shown effectiveness in addressing the challenge of data scarcity, particularly

in cases where insufficient training data existed for specific animal species.

Prior to the conduct of an on-road trial of the LAARMA technology, a series of messaging

concepts were developed, then concept-tested via qualitative focus groups (Study 1), and fi-

nally evaluated via a large-scale online survey of drivers’ responses to messaging (Study

2). Such aspects were underpinned by robust conceptual and methodological approaches to

message design and evaluation; namely, the Step approach to Message Design and Testing

(SatMDT). From an initial 20 messages at concept-testing (conducted with N = 36 licensed

drivers/riders across eight focus groups), four messages were selected for further evaluation

in the online survey (with N = 557 licensed drivers/riders who were allocated to either a

message condition to see one of the four messages being tested or a control, no-message

condition to enable comparisons between groups and relative to a baseline). Overall, all four

messages evaluated in Study 2 performed consistently well across all measures of effective-

ness, which suggests that the implementation of any of these messages would likely have

the intended effects on driving behaviours. However, there were instances where some mes-

sages appeared to outperform others on specific measures and suggests that there is scope

to selectively apply messages according to the parameters that are considered of highest

priority. Noting the VMS was to display a message across 2 screens, for screen 1 of the

message, a greater portion of participants across both Study 1 and 2 reported that it would

be more effective to identify the type of animal on the signage compared to participants

who reported that the animal should not be identified. For screen 2, there were no significant

differences in how useful participants perceived the four driving strategies that were tested;

however, participants across both studies commented that the slowing down strategy should

be presented before the scanning strategy as it made sense the first important response to

encourage was to have motorists slow down. Participants across both studies emphasised

the importance of motorists understanding that the message was a real-time warning, and

expressed concerns that motorists might become complacent if the sign were to remain ac-

tivated and/or they did not come across any animals while driving. This provided support

for leaving the sign blank and only flashing a message when an animal had been detected.

The first of the behavioural monitoring studies in this program of research comprised a

driving simulator study. Two messages (from Study 2), as shown in Figure 2, were selected
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(a) (b) (c)

Figure 2.: Visuals for the VMS. The display for the first message alternated the images (a) and (c), while the

display for the second message alternated the images (b) and (c).

for testing in this simulator study. The simulator study comprised 51 participants (all of whom

were required to be licensed drivers/riders) who each undertook a 40-minute simulated drive.

During the drive, participants were shown one of the messages and in relation to scenarios

where a cassowary was either crossing the road or walking alongside the road. Results were

also considered in relation to two key analysis windows: the approach window and the event

window. The approach window commenced 5 seconds before reaching the VMS and ended

exactly where the VMS was situated. The event window essentially captures behaviour in

the cassowary detection zone and corresponded to the point where the Time-To-Collision

(TTC) equalled zero. Overall, the results from the simulator study provided support for the

effectiveness of the messaging in significantly reducing participants’ speeds in the approach

zone; however, no such significant reduction was found for speeds in the event zone. In other

words, participants’ initial response on sighting a message on the VMS was to significantly

reduce one’s speed. The results also highlighted that while both messages were associated

with positive behavioural effects in terms of speed reductions, there were some differences

in the relative effectiveness of the two messages that were tested depending on whether the

scenario was a cassowary crossing the road or appearing alongside the road. The latter

finding highlighted that consideration should be given to the specific intent of a message to

ensure selection of the optimal message for a given purpose.

The final study within the program of research comprised a five-month field trial of the

technology and messaging at a site in Far North Queensland (FNQ) where it was known that

cassowaries frequented. After the system’s installation in late January 2024, it underwent

three months of data collection for model training, followed by a two-month on-road trial

during which the designed VMS message was displayed to alert motorists to cassowary de-

tection events, as illustrated in Figure 3. A total of 287 manually-verified cassowary sightings

were recorded from 8 March to 30 June 2024, providing valuable insights into cassowary

activities from month to month, and serving as ground truth for evaluating detection per-
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Figure 3.: Installation of the animal detection system onto the VMS trailer and its deployment in the field are

shown. (a) shows the VMS in the field with the detection system installed. (b) shows an example

of cassowary detection using the trained model. (c) shows the message displayed on the VMS for

notifying motorists the real-time cassowary detection event.

formance. Despite some technical challenges, the system effectively triggered VMS alerts

for motorists upon detecting a cassowary on or near the road during the on-road trial from

30 April to 30 June 2024. The on-road trial results validated the LAARMA system’s ability to

detect cassowaries under real-world conditions, achieving a recall rate of 0.97. This means

the system accurately triggered for 97% of the events where cassowaries were present. The

exceptionally high recall demonstrates the system’s high sensitivity in detecting cassowaries

crossing or near the road, a critical aspect for road safety-related use cases. Notably, the

self-training machine learning pipeline proved to be a robust method for continuous model

improvement. There are in total 10 models trained during the data collection and on-road trial

periods, using data available up to different dates. Quantitative evaluation results showed a

clear trend of improved model performance over time. For instance, for detecting cassowar-

ies within a 100-metre range, the mean True Positive Rate (TPR) increased significantly from

4.2% for the first trained model, to 78.5% for the last trained model. A significant increase in

mean TPR was also observed for detecting cassowaries between 100 and 200 meters. Over-

all, the field trial demonstrated that using synthetic data for initial training and auto labelling

with a Vision-Language Model (VLM) was effective in overcoming the data scarcity problem

and improving model performance. In addition, the field data analysis results discussed the

strengths and limitations of different sensor modalities for detecting cassowaries at different

ranges, providing a general guideline for choosing the suitable sensor configuration when

deploying the system at new animal crossing sites.

In addition to the animal detection results, the driver behaviour analysis across four vehicle

monitoring sites in the field trial, as illustrated in Figure 4, provided support for the positive

effects of the LAARMA system and the messaging it triggers on motorists’ behaviour. Spe-

cifically, the field traffic data analysis revealed significant reductions in vehicle speeds in the

event zone, with decreases of 6.30 km/h and 5.06 km/h at two sites, respectively, when
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Figure 4.: Map of the four vehicle speed monitoring sites corresponding to the approach zone (i.e., Sites 1 and

2) and the event zone (i.e., Sites 3 and 4).

messaging was displayed on the VMS (as triggered by the LAARMA system). These speed

reductions correspond to approximately 10% of the posted speed limit of 60 km/h in the

trial area. In the approach zone, while the VMS still played a significant role in reducing

speeds, the decrease was slightly less pronounced, with reductions of 4.26 km/h and 3.44

km/h at two sites, respectively. The crash reduction analysis further supported this, showing

that LAARMA’s impact is more pronounced in the event zone, where significant reductions in

fatal and serious injuries were observed using the Nilsson power model. Overall, the analysis

results provided support for the road safety benefits of the system and efforts to mitigate

potential AVCs.

In conclusion, the study highlights the effectiveness of combining advanced machine learning-

based detection technologies with purpose-devised messaging displayed on roadside VMS.

Together, these elements comprising the LAARMA system resulted in positive effects on influ-

encing motorists’ behaviour, as demonstrated in a driving simulator as well as in an on-road

field trial. The comprehensive program of research offers valuable and practical insights for

similar deployments of such technology for detecting animals on or near the road in other

regions.
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1
Introduction

This technical report provides a comprehensive summary of the outcomes for the Queensland

Government’s Department of Transport and Main Roads (TMR) project titled “The Develop-

ment and Performance Testing of a LAARMA—Large Animal Activated Roadside Monitoring

and Alert System”.

This one-year project started on 1 September 2023 and finished on 31 August 2024, and

was conducted by the joint team of Australian Centre for Robotics (ACFR) at The University of

Sydney (USYD) and Centre for Accident Research and Road Safety - Queensland (CARRS-Q)

at the Queensland University of Technology (QUT).

1.1. Background

Roadkill resulting from Animal–Vehicle Collisions (AVCs) is not just a tragic loss of wildlife but

also poses a significant safety hazard to humans. In regions like Australia, where diverse

fauna often intersects with human infrastructure, the issue is particularly pronounced. The

presence of large animals on roads and roadsides present road safety risks due to:

• Vehicle strikes of large animals;

• Erratic driver responses to being startled by animals on the roadside and taking evasive

action to avoid striking the animal.
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Conventional mitigation measures, such as wildlife crossings and fencing, are often lim-

ited by geographical and financial constraints. Addressing this, there has been a surge in

both research endeavours and commercial products focusing on Roadside Animal Detection

Systems (RADSs) and analogous systems. These initiatives aim to bridge the gap between

the natural habitats of animals and the ever-expanding road networks. Deployed in both

controlled laboratory settings and real-world environments, these systems are engineered to

detect animals in proximity to roads. By doing so, they serve a dual purpose: alerting motor-

ists to enhance their vigilance and providing guidance on safely navigating interactions with

the detected wildlife. However, challenges still exist in these existing solutions, for instance:

• Some RADSs introduce artificial stimuli (e.g., lights and sounds) that may disrupt natural

animal behaviours and habitats.

• Many systems are associated with high installation and maintenance costs, which pose

barriers to widespread adoption.

• Questions remain about how well these technologies can be scaled and integrated into

different geographic and climatic regions, as well as their adaptability to Australia-

specific conditions.

• Innovative machine-learning-based approaches have emerged as promising solutions

for animal detection; however, these approaches face challenges in detecting species

where there is insufficient existing data for model training.

• There is a significant lack of specific quantifiable outcomes and statistical analyses

reflecting the reduction in AVCs and enhancement of road safety.

• There is a need for more research on the effectiveness of specific variable warning

messaging content in reducing AVCs.

1.2. Project Objectives

The intent of this project was to develop and field test a system for detecting large animals

on the roadside and prompting an alert to motorists to provide advanced warning of the

hazard. The project has two overarching aims which are to:

• Accurately and reliably detect and identify large animals on the road and roadside

at distances up to 200 metres under various weather conditions, including daytime,

Section 1.2: Project Objectives 2



nighttime, rain, and dry conditions.

– System shall utilise machine learning to “train” itself in accurate detection and

identification of large animals,

– Create open-source software for the detection and identification of animals on the

roadside.

• Evaluate changes in driver behaviour (road safety) in response to animals on roadside

when drivers are provided advanced message of real-time hazard. Specifically:

– Detect change characteristics in driver behaviour (braking, speed profile change,

lane departure),

– Measure magnitude of change in driver behaviour,

– Measure duration of the change in driver behaviour (from installation of warning

system), and

– Evaluate which message wording is more effective.

1.3. Developed System Overview

RGB Cam
Thermal Cam

Driver Behaviour Analysis

Animal Detection System

Variable Message Sign

Vehicle Speed Sensors

Self-Training AI Model

Figure 1.1.: An overview of the developed LAARMA system.

To achieve the project objectives outlined in Section 1.2, the joint team carried out research

and development work on subsystems including the perception sensor suite for roadside an-

imal detection, the associated software for artificial intelligence (AI) inference running on the

edge computer, the message design for the Variable Message Sign (VMS), and driver beha-

viour monitoring for road safety analysis. An overview of the proposed system is presented

in Figure 1.1. Figure 1.2 provides a diagrammatic representation of the overall project.
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VMS Message 

Design & Testing

Literature Review

Animal Detection 

System 

Development

Animal Detection 

System Testing

Driving Simulator 

Study

Field Trial

Driver Behaviour 

Analysis

Final Report

Animal Detection 

System Evaluation

Technical 

Specification

Figure 1.2.: A diagrammatic representation of the research and development components and studies within

the overall LAARMA system project. From top to bottom, the figure clearly illustrates the sequence

of these components and studies, with some being conducted concurrently by the USYD team (in

blue) and the QUT team (in yellow), while the rest (in green) are conducted jointly by both teams.

Field trial results obtained from Far North Queensland (FNQ) have shown the effectiveness

of the developed system in detecting cassowaries and improving road safety outcomes. As

noted, particular focus in this project was upon the detection of cassowaries although the

system was designed and developed with the capability to extend its application to large

animals more broadly.
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1.4. Roles and Responsibilities

The USYD and QUT teams have collaborated closely to share the project work and deliver

the project outcomes jointly. Each team is the lead institute for different components of the

project, as illustrated in Figure 1.2 and also listed in Table 1.1.

Project Work Lead Institute

Literature Review USYD & QUT

R&D
Animal detection system development & testing USYD

VMS message design & testing QUT

Driving Simulator Study QUT

Field Trial USYD

Data Analysis
Detection system evaluation USYD

Driver behaviour evaluation QUT

Reporting USYD & QUT

Table 1.1.: Project scope and work distribution.

1.5. Open-Source Code

The project source code is available for free access through the following two GitHub repos-

itories:

https://github.com/acfr/CassDetect.git https://github.com/acfr/laarma.git
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2.1. Animal–Vehicle Collisions and Road Safety (QUT)

2.1.1 Introduction

This review was prepared by Ms Nyree Gordon and Ms Amy Schramm together with Prof

Ioni Lewis. It includes information on the scope and nature of AVCs in Australia and around

the world. Interventions and their effectiveness in reducing AVCs are also reviewed; how-

ever, given the nature of the proposed intervention involving technology-based solutions to

deliver real-time warnings via portable roadside messaging in this project, particular focus

within this review was upon the development of messaging content as well as the means by

which to evaluate the effectiveness of such messaging in helping to reduce AVCs. This focus

includes an overview of the conceptual framework underpinning the design and evaluation

of messaging strategies, the Step approach to Message Design and Testing (SatMDT [1]). This

framework also underpins this program of research with respect to the development, testing,

and evaluation of messaging content to be delivered by an innovative, real-time responsive

technological solution advising motorists when an animal has been detected on or nearby

the road.

To identify relevant literature, including government reports and academic papers, the

following databases were searched:

• SpringerLink

• ScienceDirect

• Google Scholar

• Web of Science

To capture the broad scope of information required and variable descriptors within its

research, the following search terms were used:

• Animal-vehicle crash (AND intervention OR evaluation)

• Wildlife-vehicle crash (AND intervention OR evaluation)

• Road safety (AND messaging OR intervention OR evaluation)

• Health messaging
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2.1.2 Background

2.1.2.A. Animal–Vehicle Collisions

Animal-vehicle collisions, or AVCs, are referred to using different terms in the literature, in-

cluding not only AVCs but terms such as deer-vehicle collisions, and wildlife-vehicle collisions

(WVCs). For the purposes of this review, the term AVCs is adopted.

AVCs are associated with substantial costs to individuals, communities, and the environment

each year. In 2004, over a billion dollars of vehicle damage was reported annually in the

United States due to crashes involving animals [2]. The human and societal costs of injury,

rehabilitation and death cannot be quantified, nor can the effects of AVCs on conservation

efforts. Analysis of crash data in the US between 1965 and 2017 found that there was a

four-fold increase in animal fatalities resulting from AVCs in that time [3]. Unfortunately, in

countries such as Australia, a large number of native and protected species are particularly

vulnerable [2] making it a substantial threat to those ecologies.

The main cause of human injury and/or vehicle damage related to AVCs is not in terms

of actual impact with the animal but more often the result of impact-avoidance measures,

such as extreme braking and swerving [4–7]. These manoeuvres can lead to loss of vehicle

control, rollovers or impact with secondary objects, exacerbating the damage and, thus, cost

and severity of the incident.

The occurrence of AVCs is influenced by various factors relating to motorists, animals,

and the environment (e.g., road infrastructure and time of day as well as ecological factors

pertaining to animals’ mating seasons and climatic conditions). The subsequent sections of

this review highlight studies which have provided insight into one or more of these factors,

but first an overview of this project and the animals to be of focus within it, is provided.

The southern cassowary (Casuarius casuarius johnsonii) is a large flightless bird, endemic to

north-east Queensland where it is found in pristine rainforest as well as urbanised areas. It is

listed as an endangered species by both the Australian Commonwealth and Queensland State

Governments, with motor vehicle strikes posing a significant threat to the species’ subsistence.

The Queensland Government’s TMR [8] reports that 174 cassowary deaths were attributed to

vehicle strikes between 1996 and 2018. In most cases, AVCs in which a cassowary is fatally

wounded also evoke considerable distress to the local community who may often be able to

readily identify and affectionately ‘name’ particular birds who reside in their area.
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At heights of up to two metres and weights up to 85 kg [9], the cassowary qualifies as a

large animal. Collisions related to these animals can lead to significant damage to property,

injury and loss of life. Despite its size, the chances of a cassowary surviving a vehicle

strike are low, according to Rigby [10]. The cassowary makes a valuable contribution to the

regeneration and shaping of our rainforests through seed dispersal [11]. Lower numbers of

cassowary will lead to a disruption in rainforest ecology which will then have flow-on effects,

such as loss of flora species which, in turn, effects fauna etcetera. Lastly, as an iconic and

culturally significant animal, the cassowary holds tourism value for its area. The ongoing

success of the species is of benefit to everyone.

A range of measures have been trialed to reduce vehicle strikes of cassowaries and other

large animals. These measures have included reduction in speeds through areas of known

habitat, warning signs and infrastructure solutions (e.g., bridges and fencing). However, with

the evolution of technology, comes opportunity for innovative and potentially impactful ways,

in terms of influencing motorists’ preparedness (to encounter such animals) and behaviour

(to reduce speeds and monitor the environment) to be devised and implemented. The current

program of research will devise and evaluate the effectiveness of real-time messaging de-

livered as part of an innovative technological solution. The technology, based upon machine

learning to identify cassowaries when on or near roads, will trigger a message to motorists

to warn of the potential hazard.

2.1.2.B. Factors Influencing Animal–Vehicle Collisions

Overall, limited research has been conducted in Australia regarding factors influencing AVCs.

Almost two decades ago, the Rural and Remote Road Safety Study, conducted by the CARRS-Q

and the Rural Health Research Unit (RHRU) at James Cook University, aimed to identify the

human, vehicular, and environmental factors that contributed to serious road casualties in

rural and remote North Queensland [2]. From March 2004 to June 2007, interviews were

conducted with 383 patients who were hospitalised due to a crash (298 male). Information

gathered included demographic details, attitudes to road safety and enforcement, alcohol and

drug consumption. Patients were also asked to describe the crash in their own words. In this

study, animal-related crashes accounted for 5.5% of all on-road serious casualties with night-

time travel being a prominent risk factor for such a crash. Animal-motorcycle crashes were of

the highest rate (51.7%) of any of the on-road crashes investigated in this study. A significant

proportion of swerve and avoid crashes were also reported. Several patients reported having

no warning with animals appearing at close range moments before impact. Elevated crash

counts in higher speed zones suggested that drivers/riders need to be particularly vigilant
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Figure 2.1.: An example of some traditional roadside advisory signs used in the past in Queensland regarding

areas of potential road crossing by wild animals.

in these areas, especially at the high-risk times of dawn, dusk, and darkness when animals

may be more likely to be moving about. The high proportion of kangaroos and wallabies

involved in these crashes (44.8%) highlighted the need for interventions to address AVCs

which were specific to the Australian driving context and addressing large(r) animals. Figure

2.1 provides an example of signs used in the past in Queensland to advise of road crossings

of wild animals. The official meaning of these signs, as was explained by the Queensland

Government [12], was that “the road ahead is an area where wild animals are known to cross,

or be on, the road and can be a hazard”. This information is relatively generic and vague

which can contribute to habituation and, ultimately, have a limited effect on driver behaviour.

The Rowden et al. [2] study also highlighted that there was likely underreporting of AVCs in

that only those resulting in serious injury (to a human) were likely to be reported.

To understand more about AVCs, there have been studies which have examined the person-

, animal-, and environment-related aspects that are associated with such incidents. The

subsequent section also presents some evidence based on statistical modelling procedures

that have been used in the attempt to highlight at-risk locations for AVCs.

Person-Related Factors

A recent large-scale survey in Hungary explored the habits and attitudes of 1942 drivers

regarding AVCs [5]. The researchers found that drivers who had less experience with, and fear

of, AVCs drove with more confidence, at higher speeds and less vigilance than those who had

experienced and/or who were fearful of being involved in AVCs. They also found that with

more years of driving experience, there was also an increase in one’s perceived ability to

handle unexpected driving situations, such as an animal encounter. Perhaps unsurprisingly,

it was also found that drivers who reported a higher regard for the importance of nature

Section 2.1: Animal–Vehicle Collisions and Road Safety (QUT) 10



Figure 2.2.: Example of road safety sign (Road Safety Advisory Council, Tasmania [13]).

conservation and/or traffic safety in relation to preventing AVCs self-reported driving with

more care and attention [5].

Other evidence relating to person-related factors has found that a lack of knowledge about

the appropriate or correct course of action in the event of an animal encounter also influences

potential AVCs [2, 4, 5]. The nature of AVCs avoidance manoeuvres that a driver or rider may

need to implement such as swerving to avoid an animal can also increase the likelihood of

a serious injury crash [4]. While research has shown that the safest solution for a motorist

is to actually slow down and (unfortunately) hit the animal, in a study of crash mechanisms

involved in 366 AVCs in Australia, Wilson et al. [7] reported that 58.5% of AVCs involved

the motorist swerving to avoid impact with the animal. Unfortunately, however, swerving

can often result in collision with adjacent objects, such as other vehicles, trees, poles and

guardrails thus increasing the severity and costs of the crash [2, 7].

Additional considerations of this project are road safety issues related to motorists’ (and

potentially more so for motorists who are tourists to the area) behaviours around wanting

to sight cassowaries when advised of their presence. The distraction of trying to sight a

cassowary in the wild while operating a vehicle poses a significant risk to all road users.

In areas known as popular tourist areas, some jurisdictions have opted to erect signage

advising motorists of safety requirements when wanting to observe surrounding attractions.

For instance, the sign shown in Figure 2.2 is an example from the Road Safety Advisory

Council in Tasmania [13] to encourage motorists to pull off the road whenever stopping to

take photographs or enjoy the scenery. Related to messaging of this nature and especially

pertinent to this project is that it will be important to check for any unintended behaviours

of motorists such as their braking suddenly and pulling up in a carriageway in response to

messaging about cassowaries being in the vicinity in the hope of seeing one.

A further consideration is non-English speaking tourists. Limited work has examined the

Section 2.1: Animal–Vehicle Collisions and Road Safety (QUT) 11



use of bilingual messaging on road signs. Research from Finland examined the visual de-

mand associated with the display of alternating bilingual messages on VMS. An experimental

driving study was conducted in Finland with a VMS displaying a “LOOSE GRAVEL” message

either as a bilingual message or alternating between Swedish and Finnish for 2 seconds per

frame [14]. No significant difference in eye fixations between the three sign configurations,

although the authors note that more complicated signs may illicit different driver responses

[14]. While no significant difference due to age was found, older drivers’ gaze durations and

longest fixation duration trended higher when compared with younger drivers [14].

Animal-Related Factors

Animal factors influencing AVCs occurrence range from the physicality of particular species

to their social behaviours. Borza et al. [5] and Hill, et al. [3] reported that animals larger in

size accounted for the highest number of AVCs (which could also be due to the reporting bias

that AVCs associated with larger animals are more likely to be severe and thus reported).

Bil [4] reported that while less than 5% of AVCs occurring in Canada resulted in injury to a

human, the risk of injury is related to the size of the animal involved. AVCs involving large

animals (e.g., moose or camel) are more likely to result in a vehicle occupant sustaining

serious or fatal injury. It is noted that, as a large animal, cassowary-vehicle crashes fall into

the category of posing higher risk of severe outcomes. A large-scale study conducted by

Cook and Blumstein [15] aimed at explaining variations in vulnerability to AVCs based on a

number of different animal species. They found that omnivorous mammals (that eat both

plants and animals) have the highest rate of being killed in AVCs while carnivorous mammals

(that feed on other animals) have the lowest. Their results also suggested that mammals and

birds that are known to be more social (e.g., wolves, emus) seem to be less vulnerable to

being killed in AVCs than solitary animals (e.g., moose, koalas). They also reported that diet is

an influential contributor to that vulnerability. That is, nocturnal animals are more vulnerable

to AVCs with the majority occurring between sunset and sunrise when such animals are on

the search for food [7, 16–18]; while seasonal factors such as drought and mating cycles are

also significant factors contributing to AVCs [19]. Higher levels of movement have been noted

in times of drought as animals search for food and water for survival and, likewise, activity

and movement of animals increases during mating seasons.

In Australia, research has been conducted that examined the risk of wildlife collisions for six

terrestrial native species in Victoria. Two kangaroo species (Eastern Grey and Black Wallaby),

two possum species (Common Ringtail and Common Brushtail), as well as wombat and koala

collisions were included in the study [20]. The study demonstrated that species-specific

environmental and anthropogenic variables influenced the risk of AVCs. More specifically,
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the most suitable habitat for a species, prevalence (occurrence rate) of the species and traffic

speeds influenced AVCs risk such that vehicles travelling at higher speeds were less likely

to avoid a crash whether with the animal or as a result of swerving [20]. It was also noted

that some species (such as reptiles who like to sun themselves on bitumen) are attracted to

roads, therefore increasing their risk of AVCs involvement. Kangaroos are the most common

animal involved in AVCs in Australia [7]. By their nature, kangaroos are fast moving and thus

can appear suddenly giving motorists little time to respond. Wilson, et al. [7] reviewed 366

cases of patients (278 male, median age = 40) admitted to a tertiary trauma centre as a

result of kangaroo-related crashes between 2000 and 2020. Swerving was found to be the

most common cause of crashes and to be more common at night, possibly further impacted

due to the motorist having diminished visibility. Time of year was not found to influence

the occurrence of AVCs in this study (which was somewhat unusual and may be influenced

by species); however, sunrise was identified as the most common time for crashes. Based

on these findings, the authors recommended driving with extra caution around dawn and to

follow “current Australian government advice that discourages swerving” [7].

Environment-Related Factors

The preceding section highlighted environmental factors such as drought and the mating

cycles of animals that may influence occurrence of AVCs. Weather and time of year are also

notable factors found in most research [16, 18, 21, 22], with an exception noted in the case of

[7]. For example, hibernation patterns dictate prevalence of certain animals around roadways

at different times of the year while rain and wet conditions are known to be preferred for

amphibian migration [23].

Studies in Australia, Europe and the USA also note an increased risk for AVCs in rural

landscapes and urban-rural border areas [2, 16, 24]. Single lane or 2-lane rural roads, high

animal density, and thick vegetation found in rural areas and national parks are all factors

that increase the risk of AVCs [25, 26]. Unfortunately, as cities grow and encroach on rural

landscapes, animals must alter their patterns and activity to survive. Naidenko et al., [27]

describe the white-tailed deer as a significant threat to road safety in the USA, partly due

to its adaptability to urban landscapes while Madgwick [28] explains that the cassowary has

become more of an urban dweller by default, as development encroaches into its natural

habitat. The unpredictability of how animals will adapt to changing landscapes presents an

ongoing risk for AVCs.

Regarding the environment in terms of the road context and infrastructure, however, trans-

port infrastructure affects wildlife in four major ways. This includes fragmenting populations,
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disturbing natural behaviours, direct mortality (collisions) and indirect mortality [21, 29, 30].

Influential factors on AVCs along a major highway in northern Zimbabwe were assessed by

Gandiwa, et al. [31]. This study’s findings revealed that roadside water sources, such as dams,

and denser vegetation found adjacent to roads were a major attraction for wild animals in-

cluding mammals, reptiles, birds and amphibians and which increased the risk of AVCs, while

road design such as curves and hills limiting forward vision was also a factor. Diaz-Varela, et

al. [32] analysed data from 377 collision points on a 1426-kilometre road network in Lugo,

Northwest Spain, between 2006 and 2007. They found that road type and quality of road

influence the probability of AVCs occurrence such that 60% of the crashes in their database

occurred on basic primary roads with limited infrastructure.

The broad range of influences and possible combinations of person-, animal-, and environment-

related factors contributing to AVCs require an equally diverse and comprehensive range of

countermeasures to address such factors. The subsequent section overviews some evidence

based on statistical modelling approaches. This evidence is presented to the extent that it

highlights the efforts undertaken to understand more about factors contributing to AVCs and

how at-risk locations may be identified.

Statistical Modelling To Understand More About Animal–Vehicle Collisions

Statistical modelling approaches have been implemented to further understand and pre-

dict AVCs. Modelling may also support decision-making where data may be limited (e.g.,

underreporting of AVCs). A study conducted in Maine in the US found that underreporting of

wildlife-vehicle collisions did not influence predictive model accuracy to detect AVCs hotspots,

providing that that 30% or more of AVCs were reported [33].

Various modelling approaches have been used to identify AVCs hotspots. Of particular

interest to this project is the use of Poisson CAR GLM to identify vehicle strike hotspots of cas-

sowaries in the area surrounding Mission Beach, Queensland [34]. Poisson models assess risk

while considering other elements, such as geographical design [35]. This study used inform-

ation from a local database of cassowary sightings between 1999 and 2012 and statistically

modelled which areas, time frames and life stages were related to elevated vehicle strike fre-

quency. The understanding of influences on wildlife vehicle strike clustering obtained from

this process is transferrable to a wide range of species and is particularly useful in developing

appropriate mitigation methods for a geographic area. Closely related to Poisson is Niche-

based ecological modelling that Ha and Shilling [36] explain, can accurately predict high-risk

AVCs locations using environmental variables combined with human population density data.

Bayesian modelling is commonly used to identify trends in data. Bayesian spatiotemporal
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models were applied to AVCs data from Minnesota in the US by Ashraf and Dey [37]. These

authors sought to identify specific area trends and locations where AVCs were increasing

or decreasing. The authors developed five models; one parametric spatiotemporal model

and four spatiotemporal models with a variety of interactions. The performance of these

models was evaluated by analysing data on deer-vehicle collisions in Minnesota between

2015 and 2019. Results showed that the parametric spatiotemporal model and spatiotem-

poral interaction model with type 1 interaction (between unstructured spatial and temporal

effect) were the most successful for model diagnostics and goodness of fit measures, mak-

ing them most suitable for future modelling of this type. Critical data, such as number of

animal crossings, is often not available and for large sections of roadway networks have low

AVCs counts. Gurumurthy et al. [38] implemented Bayesian hierarchical models to account

for seasonality issues across a large road network. This approach was validated with large

datasets, with the model accurately providing monthly seasonality variations in predicted

AVCs counts. Other modelling approaches, such as point pattern network models have also

demonstrated capacity to develop driving routes that mitigate AVCs risk. Researchers used

point patterns network structures to identify optimisation path selection [22]. This model

considers the optimal path selection to determine the safest path between point pairs. More

recently, researchers have explored the potential of using artificial intelligence (AI) and ad-

vance camera technology (multispectral imagery) to predict AVCs hotspots. The research

has demonstrated that AI-developed models were more accurate than current mathematical

modelling approaches [39].

While most research has used modelling to identify locations at risk of AVCs, some research

has examined the use of modelling to predict AVCs injury severity and collision costs. Random

parameters binary logit models have been employed to determine the likelihood of observing

deer on a road and vehicles striking a deer. A correlated random parameters ordered logit

model was then used to estimate the risk of injury severity resulting from the AVCs [40].

Researchers in Sweden use population dynamics models and econometric methods to predict

how species involvement in AVCs and the future costs of AVCs is likely to change [41]. Further

to this, modelling can be used for determining the optimal location for intervention (such as

VMS) placement. Austroads [42] provide an example of this as the Australian National Risk

Assessment Model (ANRAM) to calculate cost benefits of proposed sites. When historical crash

records are not available the risk assessment and predictions of crash numbers are applied

along with crash reduction factors to determine crash savings. This allows for comparison of

predicted site outcomes to be considered when choosing placement of items such as VMSs.

These findings demonstrate the modelling approaches that have been used to determine

factors contributing to AVCs as well as at-risk locations. Such knowledge is critical to the
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extent it helps with the identification of potential countermeasures. With this in mind, the next

section of this review discusses interventions aimed at addressing AVCs.

2.1.2.C. Interventions Aimed at Addressing Animal–Vehicle Collisions

A range of measures have been developed and implemented to reduce AVCs, with varying

degrees of success. Interventions have included signs, physical structures such as fences,

crossing structures that are useful for climbing animals such as possums and squirrels and

tunnels that are popular in Europe for amphibians and medium sized mammals. Road re-

flectors on roadside posts are used in Australia as a deterrent for animals as the reflectors

glow from vehicle headlights at nighttime and create a perceptual barrier [2]. These treat-

ments are also recommended by Austroads [43] as a countermeasure for motorcycle riding

hazards. Odour repellents have been used in the Czech Republic as an alternative to fencing

by applying them at regular heights (i.e., 80cm) on poles and it being placed there or used at

regular intervals [44]. Of particular relevance to the current project, technological solutions,

such as dynamic warning signs (or VMSs), are becoming more popular across the world.

Other measures mentioned by Borza, et al. [5] relate to improvements in road engineering

and maintenance, game management and driver education. Given the intent to develop and

evaluate dynamic real-time roadside messaging as part of the overall current project, focus

herein is upon warning signs and messaging as an intervention to reduce AVCs.

Warning Signs About Animal–Vehicle Collisions

Static warning signs represent a traditional intervention approach used to alert drivers to

risks they may encounter in the road environment. In the following reviews some researchers

have questioned the efficacy of these static signs in reducing AVCs, while others have sug-

gested that their versatility and cost-effectiveness mean they are a viable option in helping

to reduce AVCs.

Tryjanowski, et al. [45] reviewed evidence relating to the use and effectiveness of static

road warning signs and concluded that the main response elicited by a motorist to these

types of warning signs is merely recognition as opposed to motivating behaviour change. In

an interview with ABC news, Professor Darryl Jones from Griffith University stated that “They

make absolutely no difference to anything” [46]. Tryjanowski, et al. [45] suggest that further

research is required to enhance the effectiveness of such signage to extend beyond mere

recognition to ensure action is taken – whether that is to slow down or to monitor the road

environment more diligently. The SatMDT [1] which is employed in this project and described

in Section 4 of this review directly addresses this behaviour change aspect with respect to

Section 2.1: Animal–Vehicle Collisions and Road Safety (QUT) 16



the development of targeted message content.

Tryjanowksi et al. [45] also noted that the effectiveness of these static warning signs can be

increased when a speed limit (reduction) is also set to accompany the warning. Crash data

show that AVCs are of increased severity at higher speeds [7]. Druta and Alden [47] found

that even a driver prepared for the prospect of an animal on road, may still hit an animal

if they are driving too fast. Quite simply, at a slower speed, drivers are more able to both

detect and avoid animals even within a relatively short detection distance. In his research

into reducing collisions with marine life, Dr Mark Boulet has found that as well as raising

awareness, signs must give clear instruction on what related action people should take [46].

In the case of reducing AVCs the action should be to drive more slowly [5, 7, 45]. Thus, it

seems gauging effectiveness of signage in reducing AVCs should take into account the extent

to which it promotes or encourages motorists to reduce their speed.

While static roadside signs may have a place as an intervention in helping to reduce AVCs

and have the benefit of being a relatively low-cost option, there have been recent calls to

implement more effective strategies to reduce AVCs (see [48]). Tryjanowski, et al. [45] suggest

that there had been a societal shift from a focus on protecting road users from AVCs to more

of an emphasis on protecting animals and especially the latter when the animals are rare

or native. It appears that this view is shared by administrative bodies and the public [45].

This shift is important to the extent that it provides some insight into potential messaging

content—that a focus more on welfare and protecting animals may be appropriate. We

revisit this latter aspect in Section 2.1.3.A of this review when discussing messaging content

design. In the next section, however, we review some of the evidence available regarding

the role of technology and messaging in reducing AVCs.

Technology and Warning Messaging About Animal–Vehicle Collisions

The variety of technological messaging options is constantly growing [49–51]. VMSs, which

are electronic signs that can be programmed to display different messages, can now be

integrated with other technology to cater to a range of situations as is the case with the

current project. Specifically, technology now enables VMSs to be connected to a detection

device (to detect presence of animals) and thus relay real time hazard warnings to a motorist.

Detection devices can now also send warnings and information to in-vehicle advanced driver

assistance systems that work on GPS.

Extending into the future and drawing upon the likes of connected vehicle technologies,

there is exploration of next generation (NG) RADSs. These systems would aim to identify

animals and assess threat levels for potential AVCs. It is proposed that these systems would
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Figure 2.3.: The Step approach to Message Design and Testing (SatMDT [1]).

provide the ability to display various warning levels to motorists rather than a uniform or

more general advice of there being a possible threat of AVCs [52]. The NG RADSs may also

use vehicle-to-infrastructure (V2I) communication to directly control vehicle speeds [52].

2.1.3 Messaging Design

This program of research will be underpinned by one of the most contemporary frameworks

in road safety messaging design and evaluation, the SatMDT [1], which is shown in Figure 2.3.

The SatMDT framework incorporates principles derived from social psychological theories

of behaviour prediction, attitude-behaviour relations, and persuasion. As Figure 2.3 shows,

the SatMDT comprises four steps: (1) getting to know the audience, (2) development of mes-

sage content, (3) concept testing, and (4) final message evaluation. The theoretical models

that inform the SatMDT include the Theory of Planned Behaviour (TPB [53]), The Elaboration

Likelihood Model [54], the Extended Parallel Process Model (EPPM [55]), and Social Learning

Theory [56]. Now well-established as a robust theoretical framework, the SatMDT has under-

pinned the development and/or evaluation of an array of messaging relating to various road

user behaviours (e.g., speeding and child pedestrian safety) and other road safety issues

including raising public awareness of connected vehicle technology [57]. The framework has

also shown its versatility in terms of informing the development of messaging to be delivered

via various media types (see [58] for a review of the SatMDT’s application). Of relevance

to the current project, the framework has informed messages displayed on VMSs including
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highway VMSs [59] as well as portable roadside VMS trailers (e.g., [60]), with the portable

VMS trailer option to be the signage used in the current study.

Researchers have examined how to design signs to proactively improve visitor safety in

Australian national parks [61]. This study is noted to the extent that animal encounters could

be expected to be a part of visitor safety at national parks and, thus, insights garnered from

this study may assist roadside messaging design for messaging regarding animals on or

near the road. Consistent with the SatMDT, Saunders et al. [61] noted that it is important

to first understand the target audience, including an awareness of existing knowledge and

expectations. In addition, to understand individuals’ familiarity with potential risks, includ-

ing their perceptions of how likely and severe the risks could be, is important. Saunders et

al. [61] noted that graphical symbols within messages can positively influence individuals’

comprehension of warning signs. Moreover, they concluded that to ensure signs adequately

warn park users, the signage needed to be noticeable, easily encoded (absorbed and under-

stood quickly), located near the hazard, be credible, and describe the desired or expected

behaviour.

The subsequent section of this review focuses more on the content of roadside messaging.

2.1.3.A. Content Design for Road Warning Signs and Variable Message

Signs

Currently, no international standard exists regarding road sign design where such signs seek

to prevent AVCs. It appears many countries take different approaches, such as referring

to their own local, perhaps more charismatic species on warning signs [45]. While design

guidelines exist, such guidelines are for road signs more broadly. Aspects relating to these

guidelines are reviewed to the extent they may provide some insights pertinent to the devel-

opment of messaging content for the current project.

Traffic Signs

There are universal design considerations in the development of traffic signs worldwide.

For instance, it is important that images are legible from the specified distance and do not

distract drivers with unnecessary detail [62]. The size of the images used is equally important.

Small images may be more difficult to decipher from a distance while use of images that

are too large increases the reading difficulty of older drivers due to issues with text blurring,

particularly at night. Contrast of colour and brightness between the message components and

sign background should also be considered for optimising readability. Dewar and Pronin [62]
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suggest that the use of consistent sign models (i.e., the use of colours and shape for warning

or mandatory signs) is important to facilitate driver comprehension. It is also important to

consider whether the hazard or the consequence of an action should be included on the

sign, or if drivers should be told what they must or must not do, with consideration always

given to prioritising the simplification of signage content [61, 62].

A laboratory study, examining driver eye movement behaviours when encountering vari-

ous road traffic signs conducted in Croatia, found that signs must be clear and not require

significant mental load to efficiently derive meaning [63]. Research has been conducted in

Turkey regarding static traffic sign comprehension. This research examined local knowledge

of European Union signs to be installed as part of the European Union harmonisation process

[64]. As was highlighted in Babic, et al. [63]’s findings that driver understanding of traffic

signs improved with familiarity, Kirmizioglu and Tuydes-Yaman [64] found that signs similar

in design to existing signs are well known with high levels of understanding of sign meaning.

However, signs not widely recognised will require increased education to improve awareness

as a proportion of road users attributed an opposite meaning to the signs’ intended meaning.

As Kirmizioglu and Tuydes-Yaman [64] state, this could pose a significant risk, especially in

circumstances such as where a “No Overtaking” sign was installed, and some road users

understood it as “Overtaking Encouraged” so drove accordingly.

To understand how drivers comprehend traffic signs, a laboratory study was undertaken

in Spain by Mazón et al. [65]. Participants were presented with static signs and more dy-

namic VMSs which provided information on road conditions and routing options. The study

was conducted in two parts; comprehension and response times were assessed via recall of

time-limited displays, followed by a reading span test that assessed working memory. Signs

containing specific location details were more accurately recalled than those displaying gen-

eric information. Signs which identified the distance between incidents and the driver demon-

strated lower cognitive demand in participants. A reason for this, hypothesised by Mazón,

et al. [65], was that the structure and elements of the message promoted efficient extraction

of its meaning. The authors concluded that ensuring design consistency, and providing ad-

equate but not too much information, is essential in relaying information to drivers without

impeding their cognitive load.

Also in Spain, researchers used a driving simulator to examine if the current understand-

ing of reading capabilities (familiar and/or short words being read more quickly with less

cognitive load) apply to signage within the road environment [66]. Results showed the ad-

vantages of short words compared to long words, in terms of reading speed and reduced

cognitive load, were more pronounced when participants were reading road signs within the

Section 2.1: Animal–Vehicle Collisions and Road Safety (QUT) 20



driving simulator. Such findings indicate that not only do those established understandings

of cognitive load and word type and length apply but may in fact be further emphasised

when travelling in the road environment.

Regarding dynamic VMSs, a field study conducted in Ohio, USA, examined how instantan-

eous feedback on driver behaviour in terms of compliance with pedestrian crossing yielding

requirements, influenced drivers’ behaviour. For this study, pedestrians using a pedestrian

crossing were provided with a sign (green “thank you for stopping”) to hold up if drivers

stopped while, if drivers did not stop, a pedestrian further down the road held up a pink

“please stop next time” sign. Researchers observed driver behaviour at the intervention site

as well as a downstream location [67]. When compared with baseline data, compliance at

pedestrian crossings increased significantly both at the treatment site and the downstream

site. Such findings suggest that feedback by other road users and simple targeted messaging

encourages drivers to improve compliance with road rules at pedestrian crossings. While not

involving instantaneous feedback, Kirmizioglu and Tuydes-Yaman [64]’s results support Nasar

[67]’s in terms of message framing. Just as the green and pink signs improved driver com-

pliance, participants in Kirmizioglu and Tuydes-Yaman [64]’s survey, reported higher recall

for positively framed than negatively framed messages. The results also found that most

participants who self-reported behaviour change also reported higher recall of the positively

framed messages despite believing that the negative messages would have a greater impact

on their behaviour. There is ongoing debate around the choice to display warning messages

constantly or only when directly applicable to a real-time hazard. The research in this review

demonstrates that current views and practice vary. The Queensland Government’s policy

[68] on the display of information on VMSs allows for both philosophies, discretionary to

individual situations and requirements. As pointed out by Glendon and Lewis [60], human

factor principles necessitate only messages that require immediate behaviour change (e.g.,

speed choice) be displayed to minimise distraction and habituation. On the converse, the

Queensland Government policy also acknowledges the necessity to assure drivers that such

technology is not faulty and/or wasting tax payer money. The policy makes it clear that

the specific factors (e.g., geometry, congestion) for each VMS site must be considered in this

decision, with road user safety being the preliminary concern. Given the need for drivers

to be aware of the real-time nature of the warnings when a warning is to be displayed in

this current trial, there is evidence to suggest that messages triggered only when required

do assist in conveying the real-time nature of that message (see [59] whereby drivers only

received a message regarding speeding or tailgating when they were detected as engaging

in one of these behaviours; otherwise, the VMS signage displayed on highway gantries was

left blank).

Section 2.1: Animal–Vehicle Collisions and Road Safety (QUT) 21



Of integral consequence to the effectiveness of warning signs is the physical placement of

the sign in proximity to the hazard, in relation to allowing time/space for adequate behavi-

oural response. As explained by Glendon and Lewis [60], the stages of detection, reading,

comprehension and response to a VMS require time and distance which must be allowed

for when choosing a location. As an example, according to the Learn Drive Survive Team,

Australia [69], when travelling at 80 km per hour, a driver’s reaction distance is at least 33

metres. When combined with braking distance (in dry conditions) the total distance covered

from detection to a complete stop can be anything up from 69 metres. Factors such as road

geometry and the objectives of a particular research project combine in influencing decisions

regarding the optimum placement of VMSs. Schramm, et al. [59] conducted a field study

in South-East Queensland to evaluate the effect of VMS messages, displayed on highway

gantries, on driver behaviour change recorded not only at each of the individual VMS sites

(of which there were six; three northbound and three southbound on a ‘Blackspot section’ or

high crash section, of the Bruce Highway) as well as overall in terms of vehicles travelling

through the on-road study site. The VMSs were positioned at 10-kilometre intervals, with

speed monitoring devices (pneumatic tubes or induction loops) posited at 500 metres prior

to the sign (to determine baseline, non-message exposure behaviour of motorists) as well as

500 metres upstream from a sign, to determine longer term impacts of the messaging on

driver behaviour within a 90 km/h speed zoned road. These measurement distances before

and after the signs provided the means to determine the effects of the messaging in accord-

ance with the study’s research objectives which were to reduce travel speeds and increase

headway of the vehicles travelling through the test area. The signs were only activated and

thus displayed either a speeding or tailgating message if a motorist was detected engaging

in one of these behaviours. The aim was that if a motorist saw a message, ideally the effect

would then continue for some distance on the highway and not just at the sign; and hence

why the 500-metre follow-up of behaviour. Overall, the results confirmed a positive effect of

these VMS messaging in reducing travel speeds of vehicles travelling in their study site as well

as increases in vehicle headways (consistent with the purpose-devised messaging targeting

speeding and tailgating which were developed by project investigator [on this project also],

Lewis).

In another relatively recent project, three anti-speeding messages, were field tested for

their effects on speed behaviour using a roadside VMS trailer located on a suburban road

in Queensland [60]. The location was chosen based on Queensland Government crash data

listing sites of at least one serious (fatality or hospitalisation) speed-related crash within the

previous five years and suitability for installing the trailer-mounted VMSs and pneumatic

speed detection tubes on the road. Driver behaviour was recorded using pneumatic tubes
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at three locations including before (120 metres prior) and after the VMS (of which, after

was assessed at both 80 metres after, and then again at 310 metres after the VMS). As

noted earlier, the placement of the VMS and associated subsequent behavioural measures

(pneumatic tubes) in this study was intended to assess motorists’ baseline behaviour just

prior to being able to see the sign and then to compare that with what occurred at the

sign (after having some time to see and respond to the sign to reduce speeds if they were

indeed intending to slow down) and then again further down the road to see how long any

changes in behaviour were retained for. The design and thus distances of tube placement

was intentional and aligned with the research questions of this specific study. Unlike the

current project, this earlier project with roadside VMS was focused on the impact of the VMS

messaging on driver behaviour and of the messaging itself. In the current project, as well as

the VMS and the message it shows, there is also the added aspect of the messaging being a

real-time message about the recent detection of an animal (cassowary) near or on the road

in that study site. Thus, in the current project, the aspects influencing motorists’ behaviour

may not be just the VMS and its messaging but also the prospect of seeing and actually

seeing an animal (cassowary) on or near the roadside.

In addition, in the Glendon and Lewis [60] portable VMS study (on impact of messaging on

motorists’ speeding behaviour) motorists coming from the opposite direction also had their

behaviour (speeds and headways) measured via bidirectional tubes. Thus, these oncoming

vehicles, not seeing the VMS message (rather just the back of a VMS trailer on the opposite

side of the road) functioned as a control group whereby baseline measures of this latter group

could be assessed throughout the test site and thus compared with those of the intervention

group travelling on the carriageway of the side on which the message was purposefully

situated to target. This aspect could be incorporated into the current project as well; however,

it must be kept in mind that the control group could have potentially also see the animal

(cassowary) that the sign is warning motorists about. Thus, any reductions in the control

group in the current study would need to take into account not just the fact that they are

not the intended recipients of the message on the VMS but also the possibility that they may

have already seen and responded to seeing an animal on or near the road. This aspect must

be borne in mind and highlights that in this study, the value of additional measures such as

on-road camera may be required beyond just pneumatic tubes as any reductions in speeds

of the motorists travelling in either direction could signal the sighting of an animal on or near

the road, the impact of the signage, or in some cases both these aspects (in the case of those

travelling in the direction in which the signage is positioned).

The NSW Government’s Road Transport Authority guidelines [70] to VMS placement contain

relevant information to the current study, that being the placement of signage (permanent and
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portable) in regional areas that alerts motorists to a hazard. According to these guidelines,

the recommended minimum distance between a VMS and a hazard, within an 80 – 90 km/h

speed zone where road geometry is considered “ideal” is 120 – 180 metres with approxim-

ately an extra 4 metres needed in rural areas. Further to this, factors such as road shoulders,

clear zones and even slight curves must be considered in the placement of portable VMS

systems. At installation, angled placement must be implemented to maximise oncoming mo-

torists’ visibility and minimise potential glare. These aspects are all pertinent considerations

for this project.

The development of traffic signs is a complex endeavour involving consideration of a range

of aspects. Design features, including size, colour, contrast, legibility and placement combine

with message development considerations such as word structure and psychological framing

to achieve optimal effectiveness. While no one formula can be successful in all situations, the

preceding evidence has highlighted common themes of the need for uniformity/familiarity in

signage, the benefit of positively framed massaging, and keeping messaging simple.

Variable Message Sign Messaging Content Preferences and Understanding

Early work on VMS content design was conducted in the UK. A stated preference study

was conducted to understand drivers’ responses to VMS messaging [71]. Younger drivers and

female drivers reported being less likely to take alternate routes as advised by VMS. Also,

prior experience with alternate routes influenced the likelihood of detouring, with alternate

route use increasing as experience increased. VMSs displaying travel delay times rather

than total travel time were preferred by drivers. Drivers described the provision of vague

information (e.g., “long delays” or “delays likely”) as ambiguous and as estimates of what

such terms may mean, generated a varied array of time delay times. These estimations can

be further involved when additional information regarding the cause of the delay is provided

(e.g., crash, congestion, no additional information). As also reported in Section 2.1.3.B, VMS

messages containing tangible details of required or preferred behavioural options are more

likely to elicit more favourable responses from drivers. This evidence is consistent with the

construct in messaging design of response efficacy which essentially relates to the extent

that a message provides concrete or tangible strategies for a motorist to engage in. The

importance of this construct has been supported both theoretically with its inclusion in the

Extended Parallel Process Model (EPPM [55]) and, subsequently, the SatMDT framework (see

[1]) as well as empirically where studies have shown that response efficacy both enhances

rates that individuals are likely to accept a message as well as reducing the extent to which

they may reject it [72].
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Further to this, a simulator study, with data supplemented by eye tracking recordings, was

used to investigate the effects of driver age and message layout on visual perception and

understanding of VMS messaging. The message design factors considered were the use of

all capitalised letters, only initial letters capitalised, as well as the use of familiar, unfamiliar

pictograms or no pictograms [73]. The results revealed that lettering format, as uppercase

or lowercase, did not impact on driver reading times. Cognition times were higher when

unfamiliar pictograms were presented, indicating that it was critical for pictograms to be

familiar to optimise understanding and minimise cognitive load [73]. The study also found

that older drivers had more difficulty perceiving the VMS messaging than younger drivers

[73]. Choices in colour use also played a significant role in drivers’ perceptions of the VMS

messages and reiterate the need to concept-test such options prior to use on-road (see [1]).

A field study conducted in France with an early VMS examined legibility and contrast char-

acteristics and found that VMS point size did not influence message legibility [74]. During

daylight, sign contrast was most critical to sign legibility. The authors found that increasing

contrast, until the calculated contrast value reached 8, increased recognition. Luminance was

most critical for night-time conditions. Excessive luminance has been found to be uncomfort-

able to the eyes, however such discomfort was found not to interfere with participants’ ability

to comprehend the VMS messaging. Study results were unable to determine a narrow range

when comfort and accuracy were optimised, with the authors recommending a luminance

range of 30 < 𝐿 < 23𝑐𝑑/𝑚2 [74].

To examine the aspect of optimising drivers’ understanding of VMS messaging, research

was conducted in Iran to determine appropriate content in the case of tunnel emergency

notifications requiring drivers to evacuate the tunnel. A stated preference survey was used

to evaluate the use of text and pictograms and message presentation [75]. All messages

contained the words “STOP ENGINE; LEAVE TUNNEL” and these words were presented alone

or with an image and with or without flashing wigwags. The image included on the VMS was

one of the following: a standard green emergency exit symbol, the emergency exit symbol

in white, a yellow triangle with an exclamation mark, a standard no entry symbol (red circle

with a white bar in the centre). The signs either had the image positioned to the left or above

the text. The study revealed respondent preference was for the text combined with the green

exit symbol without wigwags [75]. The authors concluded that symbol familiarity may assist

driver understanding and preference and suggests, once again, the importance of keeping

messages simple.

Glendon and Lewis [60] completed an on-road field trial to evaluate motorists’ responses

to anti-speeding messaging displayed on portable roadside VMSs. The messages had been
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theoretically informed and thoroughly concept-tested prior to their use on-road. The results in

terms of demonstrated reductions in motorists’ speeds in response to some of the messaging

provided support for the value of theory in informing messaging content and the importance

of concept-testing messaging prior to on-road use. Further details of this study, as an on-road

evaluation study of messaging effectiveness, are described in Section 2.1.3.B.

The preceding review of evidence demonstrates that messaging displayed on VMSs should

include tangible and useful information and strategies as well as for such content to be clear,

succinct and, if feasible and relevant to do so, to implement familiar symbols to facilitate

efficient understanding. The importance of theory in developing content as well as the need

to ensure thorough piloting prior to use was highlighted.

Use of Text or Pictograms

Pictograms are becoming increasingly popular in road messaging content. Graphical rep-

resentations can be more universal than text for foreign-speaking visitors to a country and

for those with reading impairments. As the focus of the current program of research will

involve an on-road field test of the messaging and this on-road component is occurring in

a location (North Queensland) which is a popular destination for international tourists, this

aspect may likely be of particular significance.

Grace et al. [76] used a driving simulator to examine the effectiveness of word-based

versus image-based messages displayed on a warning sign that alerted drivers to the pres-

ence of large animals near a road in Florida, USA. The sign was connected to an RADS

similar to that being investigated for the current project. The effect of the RADS on collision

rate, driver speed and latency to brake was also investigated. N = 90 licenced drivers were

randomly assigned to a control group, word-based RADS or image-based RADS condition.

Participants were not informed of the study’s true purpose to avoid anticipatory behaviour

(expecting an animal to appear on the road). Results showed that drivers in both RADSs

conditions reduced their speed, braked earlier in response to the animal and were involved

in less AVCs. Of particular interest was the finding of a significant speed reduction at twilight,

when animal activity is known to increase. A mean speed reduction from 97 km/h in the con-

trol group to 89.5 km/h in the image-based group (7.5 km/h difference) was slightly larger

than the text-based condition and indicated optimum safety benefits for the image-based

RADS condition [76]. Image-based signs were associated with slightly better results than

word-based signs but the reductions in speed and other behaviours did not differ signific-

antly. Overall, the data collected indicates that the use of RADSs can reduce crash probability,

driver speed, and reaction time to brake, with image-based signage providing the optimum
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results albeit not significantly different to the text-based RADS option. To determine the most

appropriate images to display on VMSs, a study conducted by Er-hui et al. [77] in China

compared possible pictograms for five roads conditions (i.e., rain, fog, crosswind, snow, road

closure) that previously had not used any pictograms. Driver reported preferences were ob-

served for pictograms for messaging relating to all road conditions. While no differences

were found for sign preferences across age and gender, some differences were observed

between categories of years of driving experience [77].

Also in China, a driving simulator study explored drivers’ information threshold of graph-

ical VMSs based on visual perception characteristics of drivers. Participants were presented

text-only signs, simplified graphical signs, and graphical signs with text [51]. Unsurprisingly,

legibility distance decreased as sign information volume increased. Legibility speed and

subjective difficulty ratings also increased as sign complexity increased [51]. These results in-

dicate that easily identifiable pictograms may be the best type of traffic message for efficient

comprehension.

While the effects of roadside sign size, familiarity and format on driver performance in the

USA found that target identification was more accurate when less information was presented

on a sign (6 items versus 9 items) [78], research has also found that drivers were more

accurate when identifying text-based targets as opposed to pictogram targets. Within each

age group (young, middle-aged and elderly), driver performance did not significantly differ

based on the amount of information provided (6 or 9 panels), logo familiarity or sign format

(text or pictogram. However, Zahabi, et al. [78] note that elderly drivers were found to have

worse detection performance of both text and pictograms on signs than both other groups.

Another consideration when designing message content is the influence of various indi-

vidual differences beyond just aspects such as age and gender. In a driving simulator study

in Spain, Roca et al. [79] examined via two studies both how reading impairments such as

dyslexia may affect drivers’ capacity to comprehend VMS messages and if words or picto-

grams were more easily understood by drivers with a reading impairment. Both studies found

that drivers with dyslexia allocated more gazes at the traffic signs whether words or picto-

grams appeared, and which resulted in a reduction in speed control (higher speed variability).

Results for individuals’ comprehension of graphical VMS messages were also duplicated in

both studies with no difference identified between reading impaired and unimpaired drivers.

Roca, et al. [79] reported that drivers with reading impairments required more cognitive effort

and longer reading times when messages were presented in text format while Roca, et al.

[80] found that drivers with reading impairments demonstrated shorter legibility distances

compared with unimpaired driver, but reading accuracy was not affected. The similarities of
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these results suggest that pictograms may well be the best and safest option for VMS content

which is sensitive to motorists with some reading impairments.

2.1.3.B. Message Evaluation—Effect of Road Signs and Advanced

Messaging Systems on Motorists’ Perceptions and Behaviour

Multiple approaches, including self-report surveys, simulators, and field studies, have been

used to examine motorists’ responses to messaging approaches and, thus, to evaluate the

effects of such messaging-based interventions (see [1] and [60]). Of particular interest to

this review, given the initiative to be devised and evaluated within the overall project, was

examining the extent to which studies have shown that VMSs may influence motorists’ be-

haviour and, in particular, in terms of reducing travelling speeds and increasing monitoring

or vigilance of the road environment.

Driver Response to Signs (Perceptual and/or Behavioural)

As a road safety countermeasure, seminal work by Elliott [81] via the first ever meta-

analysis of road safety advertising campaigns, identified that road safety advertising and

messaging may seek to achieve increases in individuals’ awareness, motivate changes in

attitudes or future intentions, and/or ultimately change behaviours.

Regarding the study by Glendon and Lewis [60] cited earlier in this review (see Section

2.1.3.A) in which three anti-speeding messages were designed and then field tested for their

effects on speed behaviour using a roadside VMS trailer located on a suburban road in

Queensland, the results indicated that the proportion of road users exceeding the posted

speed limit were consistently lower when the anti-speeding VMSs were displayed. There

was also a residual effect, with a reduction in mean speeds and proportion of drivers ex-

ceeding the speed limit observed for the week following the removal of the VMS. None of

the three messages reduced vehicle mean speeds at night when compared to the control

period during. The effectiveness differed between the three messages and across time. Mes-

sage 1 (SPEEDING? / PENALTIES APPLY!!) and 2 (KEEP OUR STREETS SAFE / STAY WITHIN THE

LIMIT) had the greatest effect during school hours, followed by Message 1 and 3 (REDUCE

YOUR SPEED / KEEP YOUR FAMILY SAFE) during the day. While VMS anti-speeding messages

may not dramatically reduce speed selection of drivers, small reductions in speed and speed

variability can improve safety [60].

Recent work by Mohammadi, et al. [50] investigated motorists’ beliefs about the effective-

ness of static AVCs warning signs in Iran. Results of a self-report survey revealed what was
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considered a somewhat self-perpetuating cycle in respondents’ beliefs and behaviours. A

general lack of trust in the effectiveness of warning signs was reportedly due to the behavi-

oural habits of a cohort of motorists who speed in the absence of cameras. When conditions

allow high-speed driving with no speed cameras, these motorists’ awareness of warning

signs seems to diminish. Roads that do not accompany warning signs see an increased ef-

fect. Consequently, as these behaviours are increasingly observed, more drivers lose faith in

the perceived effectiveness of warning signs and the more they too, may also ignore them.

The authors also reported, however, that although static warning signs have been shown to

be ineffective in decreasing driver speed, enhanced warning signs, or VMSs, have shown

some promising effects in reducing drivers’ speeds. Increasing the effectiveness of warning

signs can reduce the speed of vehicles and subsequent speed-related crashes. For instance,

a recent Canadian study reported reductions in deer-vehicle collisions as motorists’ reduced

speeds in response to the implementation of temporary VMSs rather than static signs [50].

The colour of a VMS sign and message lines can also influence individuals’ responses.

This effect was examined in a laboratory study conducted in Taiwan by Lai [82]. Participants

were shown a video of a drive within a static driving simulator, where four VMS messages

requiring a set behaviour (press brake pedal, press accelerator pedal, turn the steering wheel

to the left or turn it to the right) were edited into the video. Response times were significantly

impacted by sign colour schemes and the amount of information presented. Signs with two

colours, rather than one or three colours, had the faster response times and had higher

preference scores. The researchers posit that the drivers’ responses, and stated preferences,

were related to the use of colours to chunk information, where one colour was used to

provide information about the road situation and the second colour was used to provide

information on how to respond. Two linked VMSs with matched colour chunking messages

resulted in faster driver responses and higher levels of driver approval than a single line

message VMS. The increased response time for single line messages may be explained by

the longer message line (requiring longer scanning), while the increased response time for

three-line messages may be explained by the need for drivers to conduct chunking of text

[82].

A Polish investigation into driver response times in real-world driving conditions [83] found

that their research group of 15 participants of a range of ages and genders displayed an

average total reaction time of 0.68 seconds, with a standard deviation of 0.15 seconds. The

study consisted of free driving in a research area, performing any manoeuvres in any chosen

route to allow for focus on driving. The task of reacting to a red signal by shifting feet from

the accelerator pedal to the brake pedal, braking the vehicle and then continuing to drive

was tested under a range of conditions. The authors emphasised that although this study
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examined real-world driving conditions, no universal standard guide can be assigned to such

a concept due to the wide range of variables present in every driving/accident scenario.

Another important variable in eliciting an appropriate response to VMSs is message dura-

tion. Its effect on drivers’ understanding of VMS was explored by Dutta, et al. [84] in the USA.

The effect of two sign message duration levels were investigated, ranging from 2 seconds

to 4 seconds, as well as message repetition on drivers’ route choice. Drivers who received

the VMS twice (one repetition) demonstrated lower message miss rates (i.e., incorrect route

choice) and merged earlier than drivers who only viewed the message once. Dutta, et al.

[84] reported that drivers were observed pre-empting the information provided on the second

screen of a bi-phasic VMS, and concluded that, as well as being critical to ensure messaging

consistency, it is imperative that the first screen is not displayed for too long. It is also im-

portant to ensure VMS content is simple and cannot be obstructed by roadside hazards (e.g.,

high vehicles) which aligns with findings by others [51, 60, 66, 79, 85].

Finally, together with the visual considerations related to VMSs, message content has a

major effect on driver responses. For example, a field study conducted in France examined

the effect of message framing (loss-based or gain-based) on drivers’ subsequent actual speed

behaviour. Four anti-speed messages were developed, with gain- and loss-based messages

focusing on crash and fuel economy impacts of speed compliance behaviours (“respected

speed limit = less crashes”; “speed limit respected = less fuel consumption”; “exceeded

speed limit = more crashes”; and “exceeded speed limit = more fuel consumption”) [86].

A control group sample was achieved by a message which simply displayed the time of

day on the VMS. Speed reductions were observed in all sign conditions, with the greatest

speed reductions observed for the gain-framed messages. As stated by Kirmizioglu and

Tuydes-Yaman [64], positively-framed messages elicit higher recall and behaviour change

than negative messages.

Speed was also a dependent variable in a driving simulator study in Italy that assessed

VMS comprehension, and the subsequent effect on driver behaviour. The research found that

when drivers do not understand the VMS information, vehicle speed is 5% slower compared

to when a driver understands the sign [87]. The study also examined driver accelerator

pressure. When drivers understood the sign, the pressure on the accelerator decreases when

approaching the sign and then increases once the driver has passed the sign. If the VMS is

not understood, the pressure on the pedal decreases on approach to the sign and continues

to decrease after the driver has passed the sign. Several authors reviewed in this paper have

mentioned the safety issue of unstable speed control. In this case, the disparity in speed

control between drivers who do and do not understand displayed messages is the safety
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concern as it may result in traffic flow disruption and crashes.

The subsequent studies relate to VMSs and impacts on motorists’ speeds in response in

relation to some specific contexts. These studies are reviewed to the extent that they still

relate to the use of VMSs on-road and with a specific intent to motivate perceptual and/or

behavioural change among motorists.

First, regarding VMSs displaying route guidance or delay notification information. Early

research conducted in the Netherlands examined how radio broadcasts and VMS information

influenced driver route choice behaviour. The findings indicate that drivers were more likely to

be influenced to make route modifications based on VMS information than radio broadcasts,

with female drivers being less likely to be influenced by such traffic information to take a

different route [88]. A field study conducted in Norway investigated the effects of VMS route

guidance on driver behaviour, with data collected on speed, braking behaviour and route

choice [89]. This study found that there was high compliance with the VMS messaging, in

that every driver complied with the instruction to change route to avoid a closed highway

section, with every fifth driver following the detour directions while the remainder made

alternate route changes. This behaviour is likely influenced by local knowledge with regards

the shortest detour, as demonstrated in the Emmerik et al. [88] study. The study also showed

a significant reduction in speed as vehicles approached the VMS when the detour messaging

was active. It was noted the heavy braking may result in an increase in risk of rear-end

collisions [89]. Jing, et al. [90] also reported an increased risk of rear-end collisions relating

to VMS complexity. VMSs requiring higher mental workload resulted in speed fluctuations

that can be perceived as an increased safety risk.

Second, regarding VMS messaging implemented to advise motorists of upcoming road

works. Researchers in Qatar examined the use of animations on VMSs at road work zones by

monitoring participants in a driving simulator. Comparison of behaviour responses between

static and animated VMS road signs indicating work zone speed limits or lane merging beha-

viours was recorded. Animated VMS signs resulted in a significant reduction in driver travel

speeds and resulted in earlier merging behaviours. Drivers were also observed to be more

likely to maintain larger headways [91]. Driver behaviours in response to remote stop-slow

controls at regional roadworks zones were evaluated by researchers in Queensland. The field

study collected driver behaviours and attitudes. Driving behaviours, including compliance,

stopping behaviour, travel speed and deceleration profile, were assessed from pneumatic

tubes and video recordings [92]. Attitudinal data was collected through an intercept sur-

vey. Three traffic lights (red-amber-green light combination, red-amber combination, and

red-amber arrow combination) and one static sign combinations were trialled. Compliance
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rates were high for all four remote stop-slow devices however, drivers had higher approach

speeds, increased approach speed variability and faster deceleration rates when compared

to roadworker controlled stop-slow control. Survey findings indicated a lack of driver un-

derstanding of new light combinations (both red-amber combinations), with drivers unsure

about the sign meaning, given that amber lights do not indicate to proceed after stopped at

standard traffic lights as they were in this study [92].

Third, studies have been conducted to evaluate the effectiveness of VMSs when used to

display messages about potential increased rear-end crash risk in a particular location. A

field study was conducted in Iran to evaluate the effects of providing drivers with information

regarding rear-end collision risk where such risk was advised as being of one of three levels—

low, medium, or high [93]. The presentation of the three risk levels to drivers resulted in

different driver responses, none of which found a relationship between speed and headway.

The effect of messages indicating the risk of rear-end collision was low resulted in drivers in

the middle and slow lane increasing driving speed at night, and never resulted in a reduction

in mean speed [93]. A medium risk message also resulted in an increased mean speed,

although not to the same extent as the “low” risk message. When drivers were presented

with a “high” risk message, mean speeds were significantly lower for all time-of-day options

as well as vehicle lane conditions except for the slow lane at night when there was no

significant change [93]. Risk compensatory behaviours present a road safety problem, with

this research suggesting there is a base level of risk drivers are willing to tolerate, and they

will increase engagement in risky behaviours to ensure that is met.

Finally, VMSs have been used around the world to advise of inclement weather conditions

to alert motorists of changing risks on-road. In a field study conducted in Finland, the effect-

iveness of VMS messaging displaying a warning about slippery roads was examined in terms

of their influence on driver behaviour [94]. Mean reductions in traffic speed of 1-2 km/h were

reported in response to the messaging. When drivers were presented with information re-

garding a recommended minimum headway, the number of short headways observed were

reduced. An intercept survey was also conducted for drivers who were presented with the

minimum headway sign. In addition to the observed behaviour modifications, the survey

findings revealed a valuable road safety contribution attributable to the messaging. Spe-

cifically, drivers reported that the signs refocussed their attention to look for cues on the

potential road condition hazard, resulting in them initiating road slipperiness testing, and en-

gage in careful passing behaviours [94]. This attentional refocus and increased vigilance is

also important for reducing AVCs and a goal of messaging in the current project.
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Evaluations of Interventions Addressing AVCs

There are a range of interventions that may be implemented in efforts to address AVCs.

To provide a holistic view of how AVCs can be addressed, a sample of these are reviewed in

this section along with evidence relating to their effectiveness. However, given the focus on

technology and messaging intervention being devised and tested in this project, we start with

reviewing evidence about road side messaging used as a means to try and prevent AVCs.

Warning Signs

Warning signs demonstrate a traditional method of communicating expectations and haz-

ards in the road environment. Early approaches were to install static warning signs. In FNQ,

huge cassowary warning signs are located on the roadside as well as the road surface. As

mentioned in Section 2.1.2.C, it has been found that static warning signs elicit barely more

than recognition by many drivers and high levels of signage are known to lead to habitu-

ation which results in moderating their influence over drivers. In their guidelines for minimum

signal sight distance, Mokkapati and Hawkins [95] explain that, to maximise effectiveness of

warning signs, they should be placed close to the location where the warning applies, and

drivers are required to initiate a behavioural response. This effect was demonstrated by

Winnett and Wheeler [96] who conducted a large-scale study of the effectiveness of over 60

installations in a range of contexts across the UK and found that the largest speed reductions

occurred close to signs. Research conducted in Utah investigated strategies to improve the

performance of static animal crossing warning signs [48] also supports this guideline. The

study found that a very small proportion (2%) of AVCs occurred within the recognition dis-

tance, of 300 feet (91.4m) in Utah, of these crossing signs. However, routes with high numbers

of warning signs had a lower number of AVCs per mile indicating that repeated reminders

raised drivers’ awareness and vigilance in general. While static signs have a place in redu-

cing AVCs as a low-cost mitigation measure, the authors recommended the implementation

of more efficient and effective measures for a more significant reduction.

As technology has improved, and associated costs decrease, warning signs have become

more proactive. Detection systems are used to support the direction of targeted warnings to

drivers. Early research was conducted in North America. Initially, beam-break technologies

were used to detect animals and provide driver warnings via VMSs. Data collected by the

system, including vehicle speeds and traffic volume, was recorded in Northern California for

10 months. The system was designed to be active (with LED warning messages illuminated)

only when an animal was detected [97]. This system was found to reduce mean vehicle

speeds, when illuminated, by 5 km/h for the 7.5 months of the study, compared to the
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preceding 2.5 month control period. In southern Sweden, a study was carried out on a VMS

located in close proximity to an at-grade fauna gate where animals cross the highway. These

gates are 30 m wide openings in wildlife roadside fencing to focus animal crossing points

while minimising population fragmentation. VMSs alert drivers when animals are detected

and tracked (by a system that utilises three heat cameras, two radar cameras and two infrared

cameras) within the at-grade fauna gate. During a 12-month period, 326 wildlife crossing

events were recorded. While data was only collected from one location, an AVCs reduction of

66% was observed. This preliminary data suggests this is an effective approach for reducing

collisions while maintaining habitat connectivity [98]. A different detection system, using

radar (specifically targeting moose-involved AVCs), was used in Canada. This radar system,

a 360°-radar scanning system, was installed on a highway segment in Alberta, Canada [99].

The system was demonstrated to reliably identify large animals, track their movements and

activate a roadside beacon (specifically, flashing amber lights) to provide advanced warning

to drivers. A preliminary review of driver behaviours found that when the warning beacon

was activated, vehicle speeds reduced by approximately 15% during all times of day. This

reflects an approximate 16 km/h reduction in speed. Further work was not completed to

evaluate the effect on AVCs within the monitored road section. The similarity between the

current study and this evaluation suggests that the findings of this study could supplement

Mukherjee et al.’s work [99].

In a setting with comparisons to the current study, dynamic animal warning signs, that were

installed to reduce panther-involved AVCs, were evaluated in Florida [100]. Placement of the

signs was informed by roadkill data to maximise their impact. The proxy of vehicle speeds

was used to determine the effectiveness of active warning signs on reducing AVCs. Traffic

volumes vary significantly between tourist season and off-season, as does the roadside

activity of large mammal species. During tourist season, where there is higher mammal

activity, there was a significant reduction in vehicle speeds when the dynamic warning sign

was active (i.e., messaging about an animal being detected in the road environment). The

reduction in vehicle speed during tourist season is critical, given the higher vehicle speeds

during this season, combined with greater traffic volumes and higher animal activity. This

finding is promising for the current study due to the similar variables involved (i.e., tourist

speed impact and animal activity.) Also of interest to the current study was the comparison of

driving patterns between tourist and off-season when, it is assumed, traffic comprises mostly

local residents. While significant speed reductions were noted in response to the flashing

signs in tourist season, the overall mean speeds were lower in the off-season. The authors

theorised the reason for this was that locals know to always drive more slowly due to possible

animal collisions and therefore, do not need to reduce their speed to the same degree as
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tourists who are not conscious of the risk until warned. While further work is required to

determine the flow-on impact on AVCs, successful speed reduction in such environments is a

positive outcome.

Driver behavioural responses to road safety messages are now also being assessed in driv-

ing simulators. A computer-animated simulator study examined driver behavioural responses

to a range of situations on a 90 km/h road in Sweden [101]. The situations assessed, by way

of vehicle speed and deceleration metrics, in forest or open landscapes, with or without a

wildlife fence were: 1) simulated moose encounter (by way of artistic impression and cut-out

figures, 2) automatic speed camera, 3) wildlife warning sign, and 4) a radio message. Ex-

periencing a moose through the simulated drive had the greatest speed reduction effect and

the largest deceleration behaviour, with reductions occurring early in an open landscape and

lowest passing velocity. Smaller decelerations were observed when the moose was observed

on a road with a wildlife fence. Speed cameras resulted in increased relative speeds before

and after being passed suggesting relatively no longer-term effects beyond having seen the

camera. The authors hypothesised that these were due to the mandatory forewarning of a

speed camera, via an E24 sign, applicable in Sweden and then the desire to recoup what

was perceived as time lost while driving at a reduced speed past the camera. In contrast,

the most effective countermeasures at reducing vehicle speeds were the more novel treat-

ments of simulated moose encounters, followed by radio messages. Further examination is

needed to understand the degree of influence their novelty had on these results and if time

and habituation would decrease their relative effectiveness. In the meantime, Jägerbrand

and Antonson [101] suggest that moose decoys or artwork observable by drivers may have

a speed reducing effect on drivers.

In line with the objective of this project being the development of messaging intending

to reduce and prevent AVCs, the preceding review focussed on communication of AVCs risk

as an intervention. There are many more approaches used to minimise motorists’ risk of

AVCs. Studies have examined the effect of interventions on wildlife crossing behaviours and

risk of wildlife mortality. Given that these approaches are designed to eliminate AVCs risk,

limited work has been conducted to examine their effects on crash or human injury risk.

Investigations have explored the impact of various interventions on a wide range of species,

some of this evidence is reviewed in the subsequent section for the sake of completion and

to highlight that interventions intended to reduce AVCs are varied and numerous.

Physical Interventions (e.g., fences, tunnels) Physical interventions separate fauna from

road hazards, reducing the risk of AVCs. It is difficult to retain wildlife population connectivity

when installing extensive roadside fencing, with an additional disadvantage of significant fin-
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Figure 2.4.: Jumpout ramp, Highway 1010, San Luis Obispo County, California [102].

ancial costs to fully fencing roadways. In their Cassowary Conservation Management Plan,

the Queensland TMR [8] describe best practice as using physical interventions to separate

fauna from roads in conjunction with alternative crossings to prevent population fragmenta-

tion.

Researchers in Portugal used statistical modelling to assess the effectiveness of partial

roadside fencing in reducing Martens’ (small, weasle-like animals) involvement in AVCs [29].

Modelling demonstrated efficacy of fencing for mitigating the risk of AVCs, with higher reduc-

tions in roadkill compared with passages. Even partial fencing of roadways (between 25%

and 7% of roadway length) was shown to reduce Marten’s roadkill while delivering the addi-

tional advantage of reducing genetic differentiation (or genetic isolation) through population

fragmentation. Field work conducted in the US found that the use of underpasses by large

animals was not influenced by the presence or absence of fencing but primarily by crossing

structure type (various widths and heights) and location (e.g., isolated from human activity

or not, nearby habitat, wildlife population density) [25].

The effectiveness of AVCs mitigation structures (jumpout ramps as shown in Figure 2.4,

overpass, underpass, fence) on AVCs was examined in a long-term study in Alberta, Canada

[103]. Average annual daily traffic on the road segment increased between 1983 and 2018,

and in the same period observations at mitigation structures found that large ungulate counts

increased while small ungulate counts decreased (unrelated to local population observations).

Mitigation structures were installed in 1999 and 2004, with a significant reduction in AVCs

observed from 2004 onwards. One potential limitation of the study design was the reliance

on official crash data, as this is likely to underreport collisions that are fatal for wildlife but

result in minimal damage to vehicles or humans. As the authors note, an added advantage

of employing appropriate mitigation measures for a given environment is the potential to

further reduce AVCs and improve habitat connectivity.
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Researchers in Brazil examined the use of unfenced highway underpasses by lowland

tapirs and other medium and large mammals [104]. The study found that mammal species

use of crossing structures (culverts and cattle boxes) differed by species type, with some

species only using specific structures (river otters and water opossums only used culverts,

and wild canids and felids were only recorded in cattle boxes while other species (e.g., ocelot,

giant anteater, crag-eating racoon and lowland tapir) used both structures. Abra, et al. [104]

pose that the costs associated at minimising the impact on the ecology are minimised by

utilising structures that are already built, and maintained, to ensure mammal mobility and

reducing population fragmentation. There are several large culverts installed around FNQ as

the cassowary is considered a large animal. According to the TMR [8], bridges and viaducts

are thought to be most suitable for facilitating cassowary movement due to their open and

natural designs. Evaluation of their effectiveness has not been found in this literature review.

Other Interventions A range of alternative interventions have been trialled to reduce

cassowary-vehicle collisions in FNQ including speed bumps and road surface markings. No

information in terms of the effects of such interventions was able to be located for reporting

in this review. Research has also examined the effectiveness of other novel interventions such

as traffic calming interventions [105], odour repellants [44, 106], daylight savings time [107],

acoustic warning systems [108, 109] and warning reflector systems [19]. As noted previously,

these other interventions have been briefly noted herein for the sake of completion and to

highlight the extent to which efforts have been varied and numerous in attempts to address

and prevent AVCs.

2.1.4 Concluding Comments

AVCs are associated with substantial costs to individuals, communities, and the environment

worldwide. In countries such as Australia, many native and protected animals, such as the

southern cassowary, are particularly vulnerable [2]. Despite the implementation of a variety

of countermeasures to minimise cassowary-vehicle collisions, fatalities from these collisions

continue to factor into the threat of the species’ subsistence as well as road safety for all

travelling in areas where cassowaries reside.

This review of current research highlights that vehicle speed is the primary factor of in-

fluence that countermeasures must address to reduce AVCs. With increased speed comes

decreased ability to monitor the roadside environment and handle unexpected driving situ-

ations (i.e., think and respond in a timely manner for the safest outcome) [2, 4, 5, 7, 27, 45].

Speed reduction warnings have traditionally been communicated through static signage and
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road markings [105] which carry the risk of habituation and loss of effectiveness on drivers.

VMSs are a novel way to communicate targeted messages to drivers and have been shown

to yield more favourable results in achieving driver compliance than previous methods [50,

97, 101].

The overall objective of this project was to develop, and field test a system for detecting

large animals (namely cassowaries) on the roadside that prompts a VMS alert to motorists

providing advanced warning of the animal being on or near the road and, thus, warning of

a potential hazard. Consequently, the focus of this review has been particularly upon the

development and evaluation of messaging strategies and, in particular, messaging displayed

on roadside VMSs. Development of the messaging in this project will be underpinned by

the SatMDT [1], which incorporates principles derived from social psychological theories of

behaviour prediction, attitude-behaviour relations, and persuasion. The intent of messaging

developed for use in the trial areas (and thus evaluated in this project) is to encourage

motorists to slow down and increase their vigilance in monitoring for animals on and around

the roads. Checking for inadvertent effects such as immediate stopping on the roadway also

need to be examined as such behaviours could negatively impact road safety.

Currently, no international standard exists regarding road sign design where such signs

seek to prevent AVCs [45] and while Australia implements standards on signage and its

use, government responsibilities for road safety vary across jurisdictions. Roads signs are

regulated by each state’s government but standardised overall [110]. Trends in the existing

research indicate that such VMS messaging should be as concise as practical to expedite

understanding, using a minimum number of colours, short, words and no unnecessary in-

formation [63, 65, 66]. Targeted and positively-framed messaging is shown to elicit higher

behaviour change, while clear instructions as to what the alternative behaviour should be

is imperative [46, 64, 67]. In some cases, the use of images shows some beneficial effects

relative to text-only but one study (relating to warnings about animals on or near road) found

no significant benefit in use of images relative to text-only messages [76]. Familiar and iden-

tifiable images have achieved higher comprehension efficiency [51, 64, 79, 80]. There are

recommended guides for the placement of VMSs based on factors such as distance from

hazard, historic data of crashes, animal activity and roadkill, road geometry and facilities.

The distance of tools to measure motorist behaviour show similar considerations and also

identify the important role played by research questions in influencing placement of such

measures as pneumatic tubes and induction loops (see [59, 60]). Appreciably, given such

aspects can vary across studies, among some of the more consistent aspects to consider are

human reaction time to factor in time it takes to see, comprehend, and react to a message.
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This research will address a gap in the literature addressing AVCs with large, flightless

birds (particularly cassowaries) and related countermeasures. While these reviews indicate

that the use of an RADS such as proposed for this project can reduce crash probability, driver

speed, and latency to brake [76] in a range of settings, this research will provide data for

Australia-specific conditions and unique species to enrich overall knowledge.

2.2. Roadside Animal Detection Systems (USYD)

2.2.1 Introduction

In response to the rising incidents of AVCs, recent years have seen a significant increase in

research efforts and development of commercial solutions to mitigate AVCs. The focus has

primarily been on RADSs and other systems with similar functions. These tools are not just

for detecting animals; they play an crucial role in alerting drivers in real-time, allowing them

to adjust their driving and avoid potential collisions. By doing so, they contribute significantly

to road safety and the preservation of wildlife.

To understand the landscape of existing solutions, we explored research papers, case stud-

ies, and existing products to understand their strengths, limitations, and areas of application.

Our focus is particularly on systems that have shown effectiveness in challenging conditions,

such as during nighttime or in rainy weather.

The rest of this section is organised as follows. Section 2.2.2 provides a comprehensive

review of existing RADSs in the research and commercial spaces. Section 2.2.3 compares dif-

ferent sensor modalities, and Section 2.2.4 provides details on machine learning approaches

that are often considered for animal detection. Section 2.2.5 presents a review of current and

past field trials. Lastly, the conclusions are drawn in Section 2.2.6.

2.2.2 Existing Systems

As human infrastructure and wildlife habitats become increasingly intertwined, the need for

advanced animal detection systems on roadsides has become more important. These sys-

tems aim not only to protect the diverse fauna but also to ensure the safety of motorists. In

this section, we provide detail on existing RADSs that have made progress in this domain.

Section 2.2: Roadside Animal Detection Systems (USYD) 39



2.2.2.A. CVEDIA-RT

CVEDIA-RT [111] is an AI inference engine designed for developers and integrators, using

synthetic data for training its animal detection algorithms. Instead of relying on traditional

methods of data collection, CVEDIA-RT generates data with 3D models. This technique, similar

to animation processes, allows for faster and more flexible data generation/collection. The 3D

models provide intricate details about objects, allowing for a more nuanced understanding

and visualisation by computers. While the benefits of synthetic data, such as speed and

flexibility, are evident, there is a broader conversation in the scientific community about its

potential impact on AI bias, privacy, and overall accuracy compared to real-world data.

2.2.2.B. Roadside Animal Detection System on U.S. 41

The RADS situated on U.S. 41 [112] exemplifies the fusion of technological innovation with eco-

logical consciousness. Harnessing solar energy, it employs sensors to swiftly notify drivers

when large fauna approach the roadway. When such wildlife is identified, the system trig-

gers intense, blinking LED lights on several cautionary signs, guiding drivers to proceed with

vigilance. Structurally, the system incorporates two infrared sensor arrays, positioned in par-

allel on both sides of the road, cumulatively spanning 2.1 km. Positioned 45 cm above the

ground, these sensors are fine-tuned to recognise a wide variety of species. Including anim-

als such as the Florida panther and the bobcat, the system offers comprehensive detection

capabilities. Its primary aim is to reduce vehicular collisions with animals, safeguarding the

area’s diverse wildlife. This not only contribute to road safety but also plays a pivotal role

in conserving the region’s biodiversity. However, while the system’s advantages are clear

in terms of safety and conservation, potential challenges might include maintenance of the

vast sensor network, ensuring consistent solar power supply, and the system’s effectiveness

during adverse weather conditions.

2.2.2.C. ClearWay

ClearWay [113] is a leader in radar-based RADS. When an animal, particularly those larger

than a small dog, ventures close to the road, ClearWay activates the electric roadside signs.

This immediate response ensures that drivers are not only alerted to the potential threat but

also remain consistently vigilant. One of ClearWay’s standout features is its ability to track

the direction in which an animal is moving, offering drivers a clearer picture of the potential

hazard. Moreover, by assessing the potential threat level of the detected wildlife, ClearWay
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provides a more nuanced alert system, ensuring that drivers are adequately informed and

can respond appropriately. However, while the system boasts several advantages, potential

challenges include its ability to differentiate between varying animal sizes accurately, its

effectiveness in different weather conditions, and the maintenance of the radar system.

2.2.2.D. The PATH Animal Warning System (PAWS)

In 2009, Caltrans, backed by the US Department of Transportation, initiated the Partners for

Advanced Transportation Technology (PATH) Animal Warning System (PAWS) on a stretch of

State Route 3 near Fort Jones in the Scott Valley area of Siskiyou County [114]. This particular

site was selected due to its infamy as a hotspot for black-tailed deer accidents, making it

one of the state’s most perilous zones for such incidents. The innovative PAWS system utilises

microwave beams as its primary detection mechanism. When a large animal, such as a

deer, intersects these beams, the system is triggered, sending a prompt signal that activates

illuminated warning signs positioned on both sides of the highway. This immediate visual

alert serves to warn drivers of the impending danger, allowing them to adjust their speed or

be more vigilant. The advantages of the PAWS system are manifold. Its use of microwave

beams ensures a high degree of accuracy in animal detection, reducing the chances of false

alarms. The immediate activation of warning signs provides real-time alerts, which can be

crucial in preventing accidents. Furthermore, by focusing on areas with a high incidence

of AVCs, the system addresses the problem at its most critical points. However, there are

potential challenges to consider. The system’s reliance on microwave beams might make it

susceptible to interference or malfunctions in adverse weather conditions. Additionally, the

installation and maintenance of such advanced technology could entail higher costs. Lastly,

while the system is adept at detecting large animals, smaller animals that might still pose a

risk to drivers might not be detected as efficiently.

2.2.2.E. The Thermographic Wildlife Detection System

A recent research paper presented an innovative method for detecting wildlife near roads at

night using thermographic imagery [115]. This approach is especially effective in bolstering

vehicle safety during the dark hours. The study introduced a smart detection system that

seamlessly integrates the Histogram of Oriented Gradients (HOG) technique with a Convo-

lutional Neural Network (CNN). To assess its performance, the system was benchmarked

against multiple CNN architectures, including the basic CNN and the VGG16-based CNN, as

well as several machine learning algorithms such as support vector machines (SVMs), ran-
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dom forest (RF), decision tree (DT), linear regression (LR), and Gaussian naïve Bayes (GNB).

The system was evaluated using real-world thermal images of wild deer from San Antonio,

TX, USA. Encouragingly, the HOG-CNN blend achieved a commendable detection accuracy

rate of around 91% for wild deer near roads, outperforming other algorithms in the test.

However, the system does have its constraints, notably its exclusive operation during night-

time and the limited datasets used for training (854 images) and testing (214 images) the

deep learning model [116] [117].

2.2.2.F. Virtual Fencing

The Virtual Fencing system is an innovative roadside solution designed to prevent animal-

related accidents [118, 119]. Activated by the headlights of approaching vehicles, it emits a

combination of sound and flashing blue and yellow LED lights [118, 119]. This dual alert

mechanism aims to warn and deter animals from the road, reducing their startling effect.

Strategically placed at 25-metre intervals on alternating sides of the road, these devices

create a sequential “virtual fence” as vehicles pass. A prominent device produced by iPTE

Traffic Solutions Ltd. [119] in Austria is solar-powered and crafted to establish a virtual fence

alongside roads. It functions from evening until morning, focusing on crepuscular and noc-

turnal creatures. This device features an inbuilt light sensor that senses an oncoming vehicle’s

headlight intensity at a benchmark of 150 lux, initiating both visual and auditory alerts. Ac-

cording to the manufacturer, the emitted sound captures the animals’ focus, and the flashing

illumination causes discomfort, prompting them to move away from the road area. However,

there are some limitations. The system’s reliance on vehicle headlights might pose challenges

in certain conditions. The effectiveness during extreme weather remains uncertain, and the

fixed 25-metre spacing may not be optimal for all scenarios. Lastly, its primary utility is

during nighttime, potentially leaving daytime incidents less addressed.

2.2.2.G. The Buried Cable Roadside Animal Detection System

The Buried Cable RADS [120] represents a recent approach to mitigating roadkill incidents in-

volving large and medium-sized animals. Embedded beneath the road’s surface, this system

employs a 300-m-long dual-cable sensor that actively monitors animal movements. When

animals cross over or near these cables, their presence perturbs an invisible electromagnetic

detection field generated around them. This disturbance prompts the system’s central pro-

cessor unit to sound an alarm, simultaneously pinpointing the exact location of the intrusion.

The detection process is nuanced, relying on criteria such as the animal’s conductivity, size,
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and movement patterns. The system can discern multiple animals crossing at once, ensuring

a comprehensive monitoring scope. Its efficacy was put to the test on the Virginia Smart

Road, a location frequented by large wild animals like deer and bear, and the results were

promising. The system is further fine-tuned in their more recent work [121] by modifying the

processor’s configuration settings. A detection threshold of 70 dB was set for the entire cable

length, considering the traffic volume of the selected road section.

The Buried Cable RADS offers several notable advantages. Its high precision ensures accur-

ate location tracking of detected animals, providing a reliable means to anticipate potential

roadkill incidents. The system’s ability to detect multiple animals crossing simultaneously

enhances its efficiency, ensuring a broad monitoring scope. Furthermore, its underground

placement means it’s unobtrusive, preserving the natural landscape and avoiding visual dis-

turbances. However, there are accompanying challenges. The installation process can be

complex, potentially requiring extensive roadwork that could disrupt traffic and the environ-

ment. Maintenance might also pose difficulties due to the system’s buried nature, complicat-

ing routine checks and repairs. Additionally, its specificity in detecting larger animals based

on conductivity could mean smaller animals or those with minimal conductivity might go

undetected, leaving some roadkill risks unmitigated.

2.2.2.H. Remarks

It is important to acknowledge that there is limited data available for evaluating the road

safety benefits achieved from these systems. Specific quantifiable outcomes and statistical

analyses reflecting the reduction in AVCs and enhancement of road safety are not extensively

documented in the available literature. Furthermore, there is a lack of commentary on the

broader adoption of these RADSs beyond the initial trials. The scalability and integration of

these technologies into widespread use, their adaptability to varied geographic and climatic

conditions, and their effectiveness over extended periods warrant further exploration.

We recognise that the unavailability of this information could be attributed to several factors,

including the nascent stage of these technologies, constraints in data collection, or limited

scope of the initial studies and trials. Future research in this domain could benefit from longit-

udinal studies that not only assess the immediate impact of these detection systems but also

evaluate their long-term efficacy, sustainability, and adaptability. Comprehensive analyses

that include varied metrics such as the reduction in collision rates, wildlife preservation statist-

ics, and cost-effectiveness will contribute to a more holistic understanding of these systems’

value and potential for broader implementation.
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2.2.3 Sensors

The challenge of detecting large animals near or on roads is complex, and no single sensor

can address all scenarios effectively. Different environments, animal behaviours, and road

conditions demand different detection methodologies. For instance, while some sensors excel

in dense forests, others might be more suited for open terrain. The size, speed, and habits of

the animals to detect also play a key role in determining the most effective detection method.

As a result, a diverse range of sensor technologies has been developed and deployed to

tackle this issue. Each sensor type, from Global Positioning System (GPS) collars to infrared

cameras, offers unique advantages and is tailored to specific detection challenges, ensuring

that large animals are detected promptly and accurately to prevent potential AVCs.

2.2.3.A. GPS Collars

GPS collars are wearable devices that transmit real-time location data, primarily used to

track animals’ migration patterns and habitat preferences [122–124]. They offer a detailed

insight into animal movements, proving invaluable for conservation efforts, especially when

monitoring endangered species. Additionally, these collars can be integrated with other

sensors, providing a holistic view of animal behaviour and movements. However, they come

with their set of challenges. The bulkiness of some collars can interfere with the animal’s

natural behaviour. Moreover, they often have a limited battery life, which can restrict long-

term monitoring. In our case, it is very expensive to equip wild large animals with GPS

collars. This financial aspect makes deploying them on a large scale particularly challenging

and demands significant resources.

2.2.3.B. RFID

RFID tags, or Radio Frequency Identification tags, are primarily used in livestock management,

offering a unique identification for each animal [125, 126]. These tags are durable and require

minimal maintenance, making them ideal for long-term animal studies and efficient herd

management. Their ability to store individual health, vaccination, and breeding details is a

significant advantage. However, their range is limited. For data collection, animals need to

be in proximity to scanners, which means they don’t offer real-time location or behaviour

tracking like some other sensors. Similar to GPS collars, in our case, it is very expensive to

place RFID tags on every wild large animal. This cost factor can be a significant constraint

when considering large-scale deployments.
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2.2.3.C. Near-Infrared Cameras

Near-Infrared (NIR) cameras are designed to capture light in the near-infrared spectrum, which

ranges from about 700 to 2500 nanometers, just beyond what the human eye can see.

These cameras are especially valuable in low-light or nighttime conditions [127, 128], but

there is often not enough naturally occurring infrared light to generate a clear image. This

is where illuminators, essentially NIR LED lights are required. When these illuminators emit

near-infrared light, it reflects off objects and returns to the camera, enabling it to produce

images even in complete darkness. One of the significant advantages of using NIR light is its

invisibility to the human eye, making it ideal for discreet surveillance. The area under obser-

vation is bathed in light that’s imperceptible to humans, yet the camera can capture detailed

images. Furthermore, in fluctuating lighting conditions, the amount of natural infrared light

can vary. Illuminators ensure that NIR cameras maintain consistent image quality regardless

of these changes in ambient light. Additionally, in advanced systems like facial recognition,

NIR illuminators can provide depth information, enhancing accuracy and detail in models or

recognition processes. In essence, while NIR cameras are adept at detecting near-infrared

light, illuminators are often essential to ensure clarity and consistency in their imaging.

2.2.3.D. RGB Cameras

RGB cameras, commonly referred to as colour cameras, capture images using red, green,

and blue channels, mirroring the human eye’s perception of colour. In the endeavour to

prevent roadkill, these cameras can play a pivotal role [129–131]. Their ability to provide

clear, high-resolution, and colour-rich images makes them adept at detecting large animals

during daylight hours. The colour data can be instrumental in distinguishing animals from

the background, especially in diverse environments where the animal’s colouration contrasts

with its surroundings. Advanced image processing algorithms can further enhance their

detection capabilities, identifying animal shapes and movements. However, RGB cameras

have inherent limitations. Their performance can be significantly hampered during nighttime

or in low-light conditions, unlike sensors that detect heat or use infrared. Shadows, glare, or

direct sunlight can also impact the clarity of the captured images, potentially leading to false

detections or missed animals. Furthermore, in conditions like dense vegetation or fog, the

visibility and effectiveness of RGB cameras can be compromised. While they are generally

more affordable than some advanced sensors, they might require sophisticated algorithms

and continuous calibration to maintain accuracy in diverse scenarios.
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2.2.3.E. LiDAR

LiDAR is a remote sensing technology that uses pulsed laser light to measure distances to

objects, creating detailed three-dimensional representations of the environment. In the realm

of preventing roadkill, LiDAR sensors offer a promising solution. Its high-resolution data can

precisely detect and differentiate large animals from other obstacles [132, 133], reducing false

alarms. Operating both day and night, LiDAR does not rely on ambient light, making it effect-

ive in various lighting conditions. Furthermore, its ability to penetrate light fog or vegetation

offers a clearer view of potential hazards. However, there are challenges to consider. While

LiDAR provides shape and distance data, it doesn’t offer colour information, which can be

useful in some detection scenarios. Dense vegetation or heavy rain can impact its effect-

iveness, scattering the laser pulses. Long-range and high-resolution LiDAR systems can be

expensive, and interpreting the data requires specialised software and expertise. Despite

these challenges, its potential in large animal detection systems remains significant.

2.2.3.F. Radar

Radar, an acronym for Radio Detection and Ranging, is a sensing system that emits radio

waves and analyses the reflections to determine the distance, angle, and velocity of objects.

In the context of preventing roadkill, radar can be a potent tool. Its primary advantage lies

in its ability to detect large animals in various conditions [99, 134, 135], including darkness,

fog, rain, or snow, where visual systems might fail. By detecting moving animals from a

distance, radar provides ample time for vehicles to receive alerts and react, enhancing road

safety. Furthermore, it is less affected by light conditions, ensuring consistent performance

regardless of the time of day. However, challenges exist. While radar is adopted for detect-

ing animal movement, it often struggles to differentiate between animals and other moving

objects without sophisticated data processing. Dense vegetation or certain terrains might

also impact radar waves, affecting detection accuracy. Additionally, high-end radar systems

can be costly, and their integration into a comprehensive RADS might require specialised

expertise.

2.2.3.G. Thermal Cameras

Thermal cameras are advanced imaging devices that capture pictures based on the heat emit-

ted by objects. Unlike traditional cameras that rely on visible light, thermal cameras visualise

temperature differences, making them particularly adept at detecting warm-blooded animals
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against cooler backgrounds [136–138]. In the context of preventing roadkill, these cameras

can have a significant impact. Large animals, due to their size and metabolic activity, emit

a distinct heat signature that stands out, especially during nighttime or in low-visibility con-

ditions. This makes thermal cameras exceptionally effective for identifying the presence of

animals near roadways, even in complete darkness. Their ability to operate independently

of ambient light ensures consistent performance, reducing the risk of AVCs. Furthermore,

they can function effectively in various environmental conditions, such as fog or dense ve-

getation, where other sensors might struggle. However, there are challenges to consider. In

environments with minimal temperature differences, like during hot days, the effectiveness of

thermal cameras can be compromised. They might also struggle to detect animals that are

well-insulated or have fur that traps heat effectively. High-quality thermal cameras can be a

significant investment, and interpreting the captured data might require specialised software

and expertise, adding to the system’s complexity.

2.2.3.H. IR Beam Sensors

IR beam sensors, often referred to as infrared break-beam sensors, operate based on a

straightforward principle: they emit infrared beams that, when interrupted, signal the pres-

ence of an object. In the context of preventing roadkill, these sensors can be strategically

placed alongside roads to detect large animals that might pose a collision risk [112, 139]. As

described in a study on U.S. 41, a system was implemented using such sensors arranged in

arrays, effectively covering stretches of road to detect local wildlife. The advantages of IR

beam interrupt sensors are notable. They can operate day and night, are relatively unaf-

fected by ambient light conditions, and can provide real-time alerts, making them invaluable

for timely warnings. Furthermore, their design can be tailored to detect only larger animals,

reducing false alarms from smaller creatures. However, there are challenges to consider.

Environmental factors like fog or heavy rain might affect the sensor’s effectiveness. The sys-

tem requires regular maintenance to ensure the beams remain unobstructed. Additionally,

while they can detect an animal’s presence, they don’t provide detailed information about

the animal’s type or behaviour. Despite these challenges, their potential in RADSs remains

significant.

2.2.3.I. Intrusion Buried Cable Detection Sensor

The intrusion buried cable detection sensor [120, 121] utilises a 300-m-long dual-cable sensor

embedded beneath the road surface to monitor animal movements. When animals approach
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or cross these cables, they disturb an invisible electromagnetic detection field generated

around the cables. This system’s detection mechanism is intricate, taking into account factors

such as the animal’s conductivity, size, and movement patterns. Notably, it can identify

multiple animals crossing simultaneously. The system’s central processor unit is alerted by

any disturbance, and it can precisely pinpoint the location of the intrusion. To optimise

detection, the processor’s settings are adjustable, with a detection threshold set at 70 dB

across the entire cable length, factoring in the traffic volume of the specific road segment.

2.2.4 Machine Learning Approaches

In recent years, research has increasingly focused on leveraging machine learning technolo-

gies in the development of RADSs. Deep learning, a specialised subset of machine learning,

has emerged as a promising solution for animal detection. These models excel in processing

complex visual data captured by sensors such as RGB, NIR, or thermal cameras, thereby

offering the potential to significantly improve detection rates and enhance safety measures

for both humans and animals. However, the deployment of deep learning models faces

challenges, particularly the labour-intensive and costly task of data labelling. In this regard,

self-supervised learning offers a breakthrough as it allows for the automatic labelling of

datasets, which not only expedites the training process but also reduces the potential for

human-induced labelling errors. This approach could be pivotal in making deep learning

models more scalable and efficient for large animal detection. Another critical consideration

is the practical environment in which these detection systems are usually deployed. Given

that many such systems are intended for use in rural or remote areas where computational

resources are limited, there is a need for real-time data processing capabilities. Edge comput-

ing serves as a solution to this challenge by facilitating data storage and computation closer

to the source, thus enabling real-time decision-making and reducing latency. This is partic-

ularly relevant in rural settings where intelligent transportation systems require immediate

data processing for optimal functioning.

Therefore, this section will examine the following five interconnected topics:

1. Machine learning approaches in large animal detection

2. Few-shot and zero-shot learning for rare species

3. Label efficient learning for object detection

4. The role of edge computing in enabling real-time, resource-efficient deployments
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5. Machine learning models on field robots and edge devices

It provides a comprehensive understanding of the machine learning approaches currently

shaping the future of large animal detection systems.

2.2.4.A. Machine Learning in Large Animal Detection

Machine Learning is a subset of artificial intelligence that enables systems to learn from

data, identify patterns, and make decisions without explicit human intervention [140, 141].

Algorithms in machine learning are diverse, ranging from supervised learning methods like RF

and SVMs to unsupervised methods like clustering and Neural Networks. The applications are

wide-ranging and have penetrated various fields, including healthcare, finance, and natural

sciences. In the context of large animal detection, machine learning models are increasingly

adopted to improve the accuracy and effectiveness of detection systems [142–144]. These

models can process large sets of sensor data to predict the likelihood of animal presence,

thereby aiding in the prevention of AVCs. The adaptability and self-improving nature of

machine learning algorithms make them well-suited for dynamic environments where animal

behaviour and movement patterns can be unpredictable.

Machine learning is revolutionising roadside transportation facilities, especially in mitigat-

ing AVCs. Traditional roadside systems, such as fencing and underpasses, have been limited

in their effectiveness due to the unpredictability of animal movements. However, with ma-

chine learning, intelligent detection mechanisms are being integrated into these facilities.

These mechanisms, equipped with sensors and cameras, can predict and alert about animal

presence in real-time. For instance, smart wildlife crossings, which use machine learning

algorithms, can adaptively control warning signs based on the detected animal activity, en-

suring drivers are alerted promptly. Machine learning models, particularly CNNs, are em-

ployed to differentiate between animal species, tailoring the alert’s urgency. This specificity

in detection aids in providing contextual information to drivers, ensuring they react appro-

priately. As more data is collected, these machine-learning-integrated facilities refine their

predictions, enhancing their effectiveness. Furthermore, the fusion of machine learning with

geographic information systems in these facilities has enabled the creation of dynamic risk

maps, which can be displayed on digital roadside billboards, offering real-time updates on

potential crossing zones. Continuous advancements in machine learning promise a future

where roadside transportation facilities are not only reactive but also proactive in ensuring

road safety for both vehicles and wildlife.

Various types of sensors can feed data into machine learning algorithms for animal de-
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tection. RGB sensors capture standard visual data, while thermal sensors can detect heat

signatures [129–131]. LiDAR [132, 133] and Radar [99, 134, 135] are also commonly used,

especially in conditions of low visibility or for capturing data in three dimensions. These

sensors collectively provide a rich set of data that machine learning algorithms can analyse

for predictive modelling.

The main advantage of machine learning algorithms in animal detection lies in their ability

to continually improve their predictive models as more data is gathered [142–146]. This

is particularly crucial for adapting to seasonal or environmental changes that may affect

animal behaviour. Machine learning algorithms can also handle multi-sensor data, thereby

providing a more comprehensive understanding of animal movement patterns. This multi-

sensory approach is often more effective than traditional methods which may rely on a single

type of sensor.

Despite their potential, current machine learning models for animal detection face notable

challenges. A primary limitation is their reliance on human-labelled datasets for training.

Firstly, there’s a scarcity of existing datasets specifically tailored for animal detection, and

this paucity becomes even more pronounced when detecting uncommon species. This lack of

comprehensive datasets restricts the model’s ability to recognise a diverse range of animals.

Secondly, the process of manual annotation of these datasets is labour-intensive. This not

only consumes a significant amount of time but also introduces the risk of human error

or bias into the model [147]. Furthermore, many advanced machine learning algorithms

demand considerable computational resources [148, 149], posing challenges for their direct

implementation into field devices, which typically have restricted processing capabilities.

2.2.4.B. Few-Shot and Zero-Shot Learning for Rare Species Detection

In the field of wildlife conservation and research, it is crucial to detect and identify both

common and rare species. Traditional machine learning models, which have shown success in

various domains, face a hurdle when it comes to uncommon species. They rely on extensive

labelled datasets to train effectively. However, for uncommon species, such datasets are

either minimal or non-existent.

Few-shot and zero-shot learning [150–152] are two advanced techniques that hold the

potential to revolutionise the detection of these elusive species. Few-shot learning, as the

name suggests, is designed to recognise new categories based on a very limited set of

labelled examples. This is particularly beneficial when dealing with species for which only

a handful of images or videos might be available [153, 154]. Instead of requiring thousands
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of images to train, few-shot learning models can generalise from just a few, making them

invaluable tools for ecologists and conservationists.

Zero-shot learning, on the other hand, takes this a step further. It leverages semantic

relationships between known and unknown species, enabling models to detect and classify

animals they’ve never seen during training [155]. Imagine a scenario where a model, trained

on various bird species, encounters a rare bird it hasn’t seen before. Using attributes of birds

it already knows, the zero-shot model can make an educated guess about this new species.

This ability to infer characteristics of an unseen species based on known attributes is what

makes zero-shot learning so powerful.

2.2.4.C. Label Efficient Learning for Object Detection

The process of manually labelling vast datasets is not only tedious but also error-prone,

potentially introducing biases that can adversely affect the model’s performance. Further-

more, acquiring ground truth labels for niche tasks, such as rare animal detection, can be

impractical and costly. Given the rapid expansion of data in today’s digital era, there is a

pressing need for automating the data labelling process. To address this, various machine

learning paradigms have been proposed to train models with limited supervision, including

self-supervised learning (SSL), semi-supervised learning object detection (SSOD), and weakly

supervised learning object detection (WSOD), reducing human intervention and thereby en-

suring more consistent, objective, and scalable labelling.

SSL is a relatively new subset of machine learning where the model is trained to solve

auxiliary tasks using information extracted solely from the input data, without relying on

explicitly labelled examples. Essentially, it leverages the structure within the data to generate

its own supervisory signal [148, 149]. This methodology bridges the gap between supervised

learning, which demands extensive labelled data, and unsupervised learning, which often

lacks direction and specificity [147, 156].

Among the approaches developed for SSOD, self-supervised sample mining (SSM) [157]

incorporates high-confidence patches from unlabelled images as pseudo labels to enhance

training. [158] focuses on improving data consistency and eliminating background distrac-

tions, while the STAC [159], which stands for self-training (via pseudo label) and the augment-

ation driven consistency regularisation, leverages extensive data augmentation techniques

on unlabelled images to enrich model robustness. Additionally, [160] implements a teacher-

student framework that utilises knowledge distillation to improve the learning process in

SSOD. Similarly, [161] adopts a mean teacher strategy, wherein a more stable and consistent
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model guides the learning of the primary model. These methods aim to optimise limited

labelled data and maximise learning from unlabelled datasets. However, they still face chal-

lenges, such as the requirement for noise-free annotations and a balanced split of labelled

and unlabelled data, which are not always achievable in practical scenarios. Furthermore,

the use of rich feature representations generated by emergent vision foundation models

like self-distillation with no labels (DINO) [162, 163], contrastive language-image pre-training

(CLIP) [164], Segment Anything Model (SAM) [165], and Web Ontology Language (OWL) [166]

can significantly reduce or eliminate the need for manual data annotation in existing training

protocols.

In the realm of animal detection, accurate and rapid identification is crucial, be it for con-

servation efforts, traffic safety, or ecological studies. Traditional machine learning models for

animal detection usually demand labelled data, often curated manually by experts. By ap-

plying these self-, semi-, or weakly-supervised learning methods, models can use unlabelled

videos and images to discern patterns, such as animal movements or distinctive features, ef-

fectively training themselves [167, 168]. For instance, a self-supervised model might be tasked

with predicting the next frame in a video, thereby learning about animal motion patterns. As

it progresses, the model becomes better equipped to detect and identify animals from novel

inputs.

2.2.4.D. Resource-Efficient Edge Computing in Detection Systems

Edge computing has emerged as a paradigm that brings computation closer to the data

source, such as Internet of things (IoT) devices, sensors, and other endpoints. This approach

is designed to reduce latency, save bandwidth, and provide efficient processing [169, 170].

Traditional cloud computing models often require data to be sent to centralised servers for

processing, which can introduce latency and consume significant bandwidth. Edge computing,

on the other hand, processes data at or near its source, making it particularly suitable for

resource-limited settings. This local processing can lead to faster response times and reduced

network congestion [171, 172]. In the context of intelligent transportation, edge computing

can enhance vehicular services through computation offloading. For instance, mobile edge

computing has been applied to vehicular networks to optimise resource allocation and reduce

computation overhead [173, 174].

Implementing edge computing requires both hardware and software considerations. On

the hardware side, energy-efficient architectures are crucial to ensure sustainability, espe-

cially in resource-constrained environments [175, 176]. Software-wise, efficient algorithms for
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task offloading, resource allocation, and data processing are essential to maximise the bene-

fits of edge computing [177, 178]. Several case studies and experiments have demonstrated

the potential of edge computing in various applications. For instance, a study on video pro-

cessing in multimedia IoT systems highlighted the effectiveness of self-supervised models

in discerning patterns from unlabelled videos and images [168]. Another experiment show-

cased the benefits of a hybrid approach, combining edge computing with cloud resources, to

optimise task segmentation and resource allocation in IoT-enabled mobile edge clouds [179].

2.2.4.E. Machine Learning Models on Field Robots and Edge Devices

Field robots and edge devices often lack sufficient computational resources for training ma-

chine learning models, making self-training on these platforms using unlabelled data partic-

ularly challenging. Self-training methods [180–182] typically involve training a model on the

device with labelled data and then making predictions on unlabelled data. If the top predic-

tion score for an unlabelled input exceeds a threshold, the input is pseudo-labelled and used

in further training iterations. While this approach can enhance performance, it also slows

down training and can lead to instability depending on the threshold. Additionally, many

edge devices and field robots do not have access to labelled data or may have noisy labels

for initial model training, significantly hindering the effectiveness of self-training using top

prediction scores.

Another approach involves adapting and fine-tuning pre-trained machine learning models

directly at the edge, eliminating the need for complete retraining. Various studies [183–187]

propose transfer learning for edge learning, allowing models on edge devices to adapt and

fine-tune with minimal computational resources. Online adaptive learning methods gener-

ate immediate predictions and incrementally update the model upon detecting concept drift,

such as using covariance matrices or least-square SVMs. However, they often sacrifice per-

formance for efficiency. The MobileDA [188] addresses domain adaptation for edge devices

by distilling knowledge from a teacher network on a server to a student network on the

edge device, achieving domain-invariance and state-of-the-art performance in real-world

scenarios like IoT-based WiFi gesture recognition. However, the effectiveness of MobileDA

assumes that the teacher network has performed well on field data, which is challenging in

practice because field data is usually unlabelled and difficult to obtain. Relying exclusively

on teacher models trained with web-sourced data can lead to deficiencies in the student

model’s capacity to collect data and self-improve. If the knowledge embedded in the teacher

model does not align with the student model’s operational environment, the student may

face difficulties in gathering and learning from relevant real-world data. This misalignment
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can impede the student model’s ability to adapt and evolve over time, thereby compromising

its effectiveness and overall utility.

Distributed and collaborative techniques are widely used for edge-device machine learning

models. These techniques leverage the computational capabilities of multiple edge devices,

aggregating their results instead of relying on a single resource-constrained device. Feder-

ated learning [189–192] offers a transformative approach to decentralised model training. In

the context of edge learning, where data is distributed across numerous edge devices, FL

enables collaborative training without centralising sensitive data. While FL can help reduce

computation needs for model training, addressing data shift and self-training for edge devices

remains challenging.

2.2.5 Field Trials

The growing issue of roadkill involving a diverse range of animal species highlights the ur-

gent need for effective RADSs. Field trials serve as a pivotal phase in the development

and assessment of these technologies, though the emphasis has traditionally been more

on conservation than road safety. In the real-world testing environments, the effectiveness,

limitations, and logistical considerations of different systems need to be comprehensively

evaluated. The trials yield essential data on detection accuracy and the impact on animal

behaviour, significantly informing the scientific community and policy-makers. The rigour of

the methodologies employed, involving various blocks and monitoring periods, ensures the

collected data is robust and reliable.

2.2.5.A. The Virtual Fencing System in Tasmania

The Virtual Fencing system, developed by iPTE Traffic Solutions Ltd. in Austria [119], is an

innovative roadside solution designed to mitigate roadkill and enhance road safety. Installed

along a 4.5-km stretch of Tasmania’s Huon Highway in April 2018, the system operates from

dusk to dawn, targeting nocturnal and crepuscular animals [118]. It employs solar-powered

devices placed at 25-meter intervals on both sides of the road.

For the Tasmanian trial, the 4.5-km stretch was divided into six equal segments with 750-

meter buffer zones at both ends, totalling eight monitored segments. These segments were

divided into two blocks, and the system was activated in phases across these blocks. The

study spanned 126 days of roadkill monitoring. However, despite prior studies indicating

reductions in roadkill up to 90% in Austria and over 50% [119], the Tasmanian field trial [118]
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shows that the system did not produce significant results. A total of 174 roadkill incidents

were monitored, mainly involving Bennett’s wallabies, Tasmanian pademelons, and common

brush-tail possums, and no substantial reduction was observed.

The system requires low maintenance and offers high reliability, but it has limitations,

including unproven effectiveness in extreme weather and a reliance on vehicle headlights,

which mainly address nighttime incidents. Its impact on wildlife habits and routines raises

concerns, as it introduces artificial stimuli that could disrupt natural behaviours and stress

levels, necessitating long-term studies to understand its ecological impact fully.

In summary, the Virtual Fencing system offers a promising yet inconclusive approach to

reducing roadkill. While it claims a number of advantages, the results from the Tasmanian

study point to the need for further research, system modifications, and perhaps a more

thorough ecological impact assessment to establish its overall effectiveness.

2.2.5.B. The Buried Cable Roadside Animal Detection System in Virginia

The Virginia Department of Transportation (VDOT), in collaboration with the Virginia Tech

Transportation Institute (VTTI), undertook a 10-month field trial to assess an RADS aimed at

reducing AVCs [120, 121]. The system utilises modular ranging buried coaxial cables and

SC2 technology to create an electromagnetic field that detects large animals. Preliminary

site surveys were conducted by VTTI researchers to address installation requirements and

potential obstacles. The trial period even accounted for seasonal variances, including winter

months.

While the trial data suggested over 95% detection reliability and the ability to function

under different environmental conditions, such as snow, there are two major concerns that

need to be addressed. First, the actual detection accuracy in real-world settings could be

lower than the study suggests. Factors like animal behaviour, size, and speed could affect

the system’s efficacy, raising questions about its operational reliability. False positives or

inconsistent detection rates could undermine road safety, potentially leading to distractions

for drivers or less effective animal deterrence. The financial constraints associated with this

system cannot be overlooked. The installation process involves not just the sensor cables but

also complex site surveys and potential road infrastructure modifications. Moreover, these

specialised cables require periodic calibration and maintenance, all of which contribute to the

system’s overall costs. Without a detailed cost-benefit analysis, it remains uncertain whether

the initial and ongoing financial investments would be justified by the system’s efficacy in

reducing roadkill and enhancing driver safety.
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While the technology appears promising and the methodology of the field trial was robust,

these points highlight that the RADS still requires significant improvements in both detection

accuracy and cost-effectiveness before it can be considered for broader implementation.

2.2.5.C. The Roadside Animal Detection System in Florida

The RADS in Florida is an innovative project to reduce the risk of AVCs along a 1.3-mile section

of US 41 [193]. Initiated through a multi-agency collaboration, the system became operational

in January 2012. It aims to protect large animals such as panthers by alerting motorists with

bright LED lights, activated by solar-powered sensors that identify wildlife approaching the

roadway. The system sensors are daisy-chained infrared sensors, specifically engineered to

detect large animals. They are strategically placed 153 meters apart, just beyond the road

shoulders, creating a 2.1 km detection beam that runs parallel to the road. The system is

designed to ignore smaller animals by setting the infrared beam at a height of 46 cm above

the ground. The project underwent rigorous evaluation using a driving simulator to measure

its efficacy, eliminating external variables such as weather and equipment malfunctions. The

study included 90 participants, ranging from 18 to 45+ years old, divided evenly into three

age groups to consider age’s impact on driver behaviour.

The study focused on two main objectives: evaluating the system’s impact on driver speed,

reaction time, and the likelihood of collisions, and comparing the effectiveness of word-based

versus picture-based warning signs. Results were promising: drivers responded positively

to the system warnings, reducing speed and improving reaction times. The picture-based

signs were found to be particularly effective during twilight hours, reinforcing prior research

advocating for their use. Though the difference in collision rates between word-based and

picture-based signs was not statistically significant, researchers suggest that a larger sample

size could yield more conclusive results. An additional key insight was that even a small

reduction in speed could result in a significant decrease in the likelihood of a collision. The

simulator study found that a speed decrease from 97 km/h to 89.5 km/h could significantly

reduce crash rates. The study also reinforced the importance of driver age as a factor, with

younger drivers displaying more risk-prone behaviour, emphasising the need for targeted

educational programs.

Another significant finding pertained to the system’s effectiveness at different times of

day. Data suggested that the lower nighttime speed limit in Big Cypress National Preserve

could be highly effective in reducing AVCs, an implication that could inform future policy

decisions. Brake reaction times, a crucial factor in preventing collisions, were notably better
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among the youngest and oldest age groups when exposed to picture-based the system’s

signs, suggesting that these may be more effective in priming drivers to expect an animal on

the road.

In summary, the Florida RADS project presents a well-researched, multi-faceted approach

to the complex issue of AVCs. While the results indicate that the system has the potential to

make meaningful improvements in driver behaviour, they also open up avenues for further

research, including the comparative effectiveness of different types of warning signs and the

need for age-specific interventions.

2.2.5.D. The PATH Animal Warning System in California

The project was a collaboration between Caltrans and the California PATH Program, with the

Western Transportation Institute of Montana State University as a subcontractor [114]. The

focus was on the PAWS and the reliability of RADSs. AVCs are a growing concern as urban

development encroaches on wildlife habitats. Solutions like fencing, overpasses, and dy-

namic flashing systems have been explored. The project aimed to: (1) assess animal warning

systems’ effectiveness, and (2) gauge driver reactions to these warnings. A site near Fort

Jones in Northern California was selected for the study. An RADS using a microwave system

was chosen to work with PAWS. The PAWS Monitoring System allowed researchers to monitor

system functionality and detect recent events. The PAWS data acquisition system (DAS) com-

bined data from animal detectors and vehicular radars to measure driver responses. Phase

Two began with repairing the system after a 9-month hiatus due to contractual delays. Chal-

lenges included repairing damage from a vehicle collision at the test site. The study used

two experimental designs to understand the influence of warning signs on drivers.

The research team believes the project effectively measured the detection system’s reliab-

ility. However, they recommend further reliability research post-system modifications. The

project’s duration was deemed insufficient to assess the system’s impact on large mammal-

vehicle collisions. The team suggests monitoring for 3-5 more years and re-analysing the

data. Defining success parameters and threshold values for such projects is crucial. While

public opinion is valuable for system location and design, long-term decisions on RADSs

should be based on a strategic plan. This plan should consider systems in various regions,

ensuring design and reliability issues are addressed, and include a comprehensive public

communication strategy.
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2.2.5.E. Remarks

Road Safety and System Reliability: The implications of RADS technologies on road safety

are paramount, which require a thorough examination of their reliability and effectiveness in

preventing accidents. A critical analysis of how these systems respond to failures is essential

for ensuring that they consistently contribute to improved driver awareness and overall road

safety.

Optimising for Ecological Preservation and Human Safety: Adaptations and adjust-

ments made during field trials should not only focus on technological refinement but also

prioritise optimising the systems for ecological preservation and human safety. This requires

a multidisciplinary approach, bringing together expertise from technology, ecology, trans-

portation, and other relevant fields.

Adapting to the Australian Context: Australia’s distinctive wildlife and challenging road

conditions necessitate a specialised approach to RADSs. The continent is renowned for its

diverse array of unique and rare species, many of which exhibit distinct appearances, be-

haviours, and life cycles that are not found in other parts of the world. This uniqueness

presents specific challenges for the implementation of RADS, requiring technologies that are

finely tuned to the local fauna’s specific habits. Ensuring that these systems are sensitive to

the particular characteristics of Australian wildlife is crucial, as the goal is to reduce roadkill

incidents without disrupting the animals’ natural activities or habitats.

Field trials conducted within Australia must aim for holistic solutions, enhancing road safety

for both humans and animals while preserving the ecological balance. Unlike some RADS im-

plementations in other regions, which may not fully consider the impact on animal behaviour

and habitat, the Australian context demands a more nuanced and considerate approach. By

taking into account the distinctiveness of Australia’s wildlife and their habitats, RADSs in Aus-

tralia have the potential to set new standards in mitigating roadkill incidents, ensuring safer

roads, and fostering a thriving ecological system.

Building a Robust and Reliable Solution: Drawing lessons from past experiences and

system failures is crucial to developing a robust and reliable RADS solution for Australia. This

requires a dedicated effort to test and adapt these systems, ensuring that they are fit for

purpose and capable of contributing to wildlife preservation, enhancing driver safety, and

mitigating roadkill incidents.
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2.2.6 Conclusions

The increasing issue of roadkill, driven by the expansion of human infrastructure into wildlife

areas, requires innovative strategies to protect both wildlife and humans. In this context,

RADSs, enhanced by deep learning models and validated through comprehensive field trials,

emerge as a cornerstone in the strategic approach to curb AVCs.

Advanced Sensory Technologies: RADSs are distinguished by their incorporation of

cutting-edge sensory technologies. The systems are not limited to traditional sensors but

are enhanced with the integration of technologies like LiDAR, radar, and thermal cameras.

These advanced sensors are proficient in capturing intricate environmental data, offering a

comprehensive insight into animal movements in real-time. Their capability to function ef-

fectively in low light conditions amplifies the operational efficiency of RADSs, ensuring a 24/7

active animal detection mechanism.

Deep Learning Model for Animal Detection: The efficacy of RADSs is amplified by the

integration of deep learning models, which are pivotal in transforming raw, complex data

into actionable insights. These models are engineered to identify intricate patterns, enabling

precise animal detection. Innovations in self-supervised learning and edge computing have

emerged as solutions to the challenges of efficient data labelling and real-time processing,

respectively. These advancements are instrumental in enhancing the adaptability and effect-

iveness of RADSs.

Automatic Data Labelling: In the realm of data analysis, the advent of self-supervised,

few-shot, and zero-shot learning has revolutionised the process of data labelling. These

innovative techniques facilitate automatic labelling of extensive and complex datasets. Their

integration ensures enhanced accuracy in animal detection and augments the adaptability

of RADSs to identify a wide variety of species, including the rare and less documented ones,

effectively addressing the data insufficiency challenge.

Evaluation of Safety Outcomes: The theoretical assertions of the effectiveness of RADSs

are substantiated through field trials. These trials, conducted in diverse real-world settings,

provide critical feedback essential for the continuous refinement of the systems. However,

there exists a gap in knowledge about whether the performance of these trials has led to the

broader deployment of the systems in various regions or settings.

Broader Deployment Potential of Field Trials: Furthermore, understanding the broader

deployment implications can offer a more comprehensive view of RADSs’ potential impact

on larger scales. The overarching objective remains the significant contribution of RADSs to
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enhancing safety outcomes, diminishing roadkill incidents, and promoting a balanced coex-

istence between human and wildlife populations. Recognising and addressing this knowledge

gap can further solidify the system’s potential for widespread adoption.

In this evolving landscape, the integration of advanced sensor technologies, sophisticated

deep learning models, and empirical insights from field trials is pivotal. It plays a key role

in moving towards a future where the safety and preservation of both human and animal

lives are not just a possibility but a tangible reality. Yet, further studies and assessments are

essential to bridge the knowledge gap regarding the scalability and broader application of

these systems following their promising initial trial results.
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3.1. Introduction

This chapter details the development and testing of a large animal detection system and its

associated machine learning approach for classification. It employs advanced technologies to

address the challenges associated with real-time animal detection in varying environmental

conditions. Additionally, the system is designed to be low-cost and easy to deploy, requiring

minimal infrastructure support in the field.

To thoroughly evaluate the performance of the developed system, particularly focusing

on its effectiveness in edge deployment and its detection range, we have conducted a series

of comprehensive testing experiments. These experiments are designed to rigorously assess

the system’s capability to accurately detect objects at varying distances and under different

operational conditions. This evaluation process is crucial for ensuring that the system not only

meets the expected specifications in controlled settings but also performs reliably in real-

world scenarios, where factors such as environmental variability and hardware limitations

can significantly impact effectiveness.

The chapter begins with the hardware design of the developed system in Section 3.2.1,

detailing the sensor suite, networking, and edge computing. This is followed by the software

structure in Section 3.2.2, which addresses key elements such as image processing pipelines,

event-triggering pipeline, data logging, and remote access capabilities. These system fea-

tures are vital for ensuring that the system is not only functional but also manageable and

accessible for practical applications. Section 3.2.3 covers the methodology, auto-labelling,

and experimental results of the novel machine learning pipeline developed to enable the

self-training of the animal detection model. This approach ensures the system’s capability

to detect objects beyond pre-defined categories, thereby enhancing its adaptability to large

animal detection. Central to our pipeline is an optimised object detection model, tailored for

edge deployment. This model strikes a balance between real-time processing speed and de-

tection accuracy, which is essential for immediate responses in dynamic road environments.

The chapter also covers the system testing after the development phase. Section 3.3.1

presents tests conducted in outdoor and lab environments to validate various system functions

developed. Section 3.3.2 presents the evaluation results of the fine-tuned detection model.

Lastly, the conclusions are presented in Section 3.4.
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3.2. System Development

3.2.1 Hardware Design

3.2.1.A. Sensor Suite

The sensor suite primarily consists of two RGB cameras, one thermal camera, and one solid-

state LiDAR, as illustrated in Figure 3.1. Among these sensors, the cameras are specifically

designed for large animal detection, utilising a vision-based machine learning approach ef-

fective under both day and night lighting conditions. While the cameras serve as the primary

sensor type for animal detection, the LiDAR sensor is included in this project to provide an

alternative sensory modality for monitoring vehicle-animal interactions.

Figure 3.1.: The sensor head developed for animal detection. Its components, from top to bottom, include: a

black cap housing WiFi, GPS, and 4G antennas for communication; a white electrical junction box;

an aluminium enclosure for the thermal camera; two RGB cameras (the left being the medium-angle

camera and the right, the telephoto camera); and the solid-state LiDAR. In the picture, the sensor

head is shown temporarily mounted on a tripod for outdoor testing.

RGB Cameras

The RGB camera model employed is the Lucid Vision Labs TDR054S-CC, featuring 5.4

MP, 2880 x 1860 pixel resolution, and 120 dB high dynamic range (HDR) imaging. HDR

cameras are essential for accurate and robust animal monitoring in Queensland’s outdoor

environments, as they are designed to capture a wide range of lighting conditions—from

bright sunlight to dark shadows—in a single image. This capability makes them well-suited
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for capturing detailed and accurate images of animals in outdoor scenes, where lighting can

be unpredictable and challenging for standard non-HDR cameras to balance.

Additionally, the two RGB cameras complement each other, being paired with different

optical lenses to cover near and far scenes. The medium-angle optical lens employed is

the Edmund Optics 12 mm, with a 41.4° horizontal Field-of-View (FoV), while the telephoto

lens used for the other camera is the Edmund Optics 50 mm, with a 10° horizontal FoV.

Digital zooming is also utilised for images from the medium-angle camera to cover mid-

range scenes. It should be noted that image cropping and resizing techniques are applied to

each camera to achieve a higher frame rate and lower data storage requirements for logging

while ensuring the animal detection performance remains unaffected. These details will be

elaborated on in later sections.

The camera bodies are factory IP67-rated, and both lenses are housed in IP67-rated lens

tubes, enabling the entire RGB camera systems to operate under all weather conditions.

Therefore, no additional enclosure is required for the cameras.

Thermal Camera

The lack of a lighting source poses a significant challenge for animal detection using

RGB cameras during nighttime. To overcome this limitation, the system employs a thermal

imaging camera, the FLIR A68, which has a resolution of 640 × 480 pixels. All objects,

including animals, emit infrared radiation, which is invisible to the human eye. Thermal

imaging cameras can detect this radiation and create a visual representation of the heat

signatures emitted by animals, even in complete darkness. This capability makes them an

effective tool for identifying and tracking animals at night or in dense foliage. The thermal

camera is equipped with a factory lens that has a 24° horizontal FoV.

The thermal camera is housed in an autoVimation Salamander enclosure with a Ger-

manium front window, as illustrated in Figure 3.1, to make it weatherproof in outdoor envir-

onments.

LiDAR

The LiDAR sensor used in the system is the Neuvition Titan M1-R solid-state LiDAR, featuring

a working distance of up to 300 metres for objects with 20% reflectivity. This LiDAR has a

15° horizontal FoV and an 8° vertical FoV, and it provides dense point clouds at a rate of

10 frames per second. These point clouds are useful for reconstructing vehicle and animal

trajectories in post-analysis. The LiDAR sensor has a factory IP67 rating.
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3.2.1.B. Networking and Edge Computing

The network equipment and edge computing components are presented in Figure 3.2. The

system features an NVIDIA Orin 64GB Dev Kit, serving as the main computing unit for sensory

data processing, image inference, data logging, and triggering animal detection events. A

QNAP QSW-2104-2T network switch is employed to connect all sensors and the Orin, using

1Gbps and 10Gbps Ethernet connections, respectively. The network is managed by a Teltonika

RUTX11 industrial router, which also provides dual-band WiFi and 4G LTE cellular connectivity.

Figure 3.2.: The networking and edge computing for the developed system. From left to right: a white electrical

circuit breaker; the NVIDIA Orin computing unit; the QNAP network switch; and the Teltonika router.

These devices were temporarily housed in a Pelican protector case for outdoor testing, as shown

in the picture.

An overview of the system’s Ethernet connection can be found in Figure 3.3. The entire

system operates on 12V DC power, with an average power consumption of 96W and a peak

of 140W. Since the LiDAR sensor is not used for animal detection in the project, removing it

from the system can significantly reduce power consumption.
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3.2.2 Software Structure

3.2.2.A. Image Processing Pipelines

There are four image processing pipelines running in parallel in the software, as shown

in Figure 3.4. Each pipeline captures images from a camera as input and performs basic

image manipulation techniques, including cropping and resizing, before feeding them into

the YOLOv8 object detector to generate detection results. It is important to note that these

four pipelines process images from three cameras, with the first and second pipelines in

Figure 3.4 sharing images from the same medium-angle RGB camera, but using different
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cropping settings. The second pipeline processes a smaller region of the images from the

camera, creating a digital zoom-in effect. All pipelines for the RGB cameras resize the original

images to match the input resolution for YOLOv8 and to conserve data logging space. Since

the thermal camera produces VGA resolution images, no image resizing is required. The

object detection results from the four pipelines are then fed into the event-triggering pipeline

for further processing.

3.2.2.B. Event-Triggering Pipeline

Bayesian Filter
Cam 1 Object 
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Event Trigger

Bayesian Filter
Cam N Object 
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Figure 3.5.: The event-triggering pipeline for the cameras.

The event-triggering pipeline takes the YOLOv8 detection results as input, performs signal

filtering, and aggregates the outcomes to trigger the final detection events, as shown in Figure

3.5. The raw YOLOv8 output contains the detection of a list of object classes supported by

the trained detection model. However, the system only needs to check for the detection of

one or multiple animal classes that it is designed for, such as “cassowary”, defined here as

the class(es) of interest (CoI). Despite the detection model’s performance, the raw detection

results are often noisy, containing missed detections and false positives, which necessitate

proper signal filtering. In this pipeline, independent Bayesian filters are employed for each

object detection input channel. Eventually, the filtered signals are fused to trigger a detection

event, which is then connected to the event-triggered data logging and the roadside message

display.

3.2.2.C. Data Logging

The data logging feature developed for the system can be divided into two parts: continu-

ous data logging and event-triggered data logging. The continuous logging operates 24/7,

providing essential field data for training the initial detection model and for subsequent iter-

ative model improvements throughout the system’s life cycle. In contrast, the event-triggered
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logging only records data just before and after the animal detection events occur, primarily

for post-analysis and event playback. Data logged in either scheme can also be used for

evaluating the system’s performance in animal detection. The edge computing unit has a

2TB solid-state disk for storing the logged data.

Continuous Data Logging

The system logs a continuous stream of raw sensory data, including image frames, LiDAR

point clouds, and other essential detection and system information. Due to limited data

storage on the edge computing unit, the logging is managed with a few control strategies:

1. Log sensory data at lower frame rates, e.g., one-tenth of the original rates

2. Use data compression, e.g., JPEG compression for images and lossless compression for

LiDAR point clouds

3. Manage the logged files against an allocated data budget on the local file system

Furthermore, the system generates lightweight H.265 encoded videos of camera images

for conveniently previewing scenes of interest in the field without needing to extract the

complete set of logged files from the system, thus saving on 4G data usage and transmission

time.

Event-Triggered Data Logging

The system also features event-triggered data logging, which logs data for 𝑥 seconds

before and 𝑦 seconds after a detection event. The purpose of this logging scheme is to

capture sensory data at the original frame rates around the events, which are essential

for playback, investigation of the events, post-analysis of data, and evaluation of system

performance.

3.2.2.D. Remote Access

The system provides remote access for various purposes, including status monitoring, sys-

tem maintenance, troubleshooting, and data retrieval. It offers two methods for remote login:

through a virtual private network (VPN) or using its public domain name amraal.duckdns.org.

To enhance its security against cybersecurity threats, the system only accepts SSH logins us-

ing public/private ED25519 key pairs from authorised remote hosts. Software tools have been

developed to extract H.265 preview videos and logged data files from the system remotely.
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Finally, the system also provides a real-time streaming protocol (RTSP) stream of the cam-

era images for quick live previews. This feature is accessible only through a WiFi connection

and VPN for security reasons.

3.2.3 Self-Training Machine Learning Pipeline

The LAARMA system requires the training of an effective machine learning model for roadside

large animal detection, along with the subsequent deployment of the trained model on an

edge device, which presents several unique challenges:

Data Acquisition and Labelling: A fundamental challenge in training machine learning

models, especially for animal detection, is the need for a substantial amount of accurately

labelled data. In the context of cassowary detection, this means obtaining a considerable

volume of well-labelled images or videos of cassowaries in various road scenarios. The key

challenge is how to efficiently and cost-effectively label such a dataset for training deep

learning models without compromising the quality and diversity of the data.

Resource Constraints in Deployment Environments: Roadside units, often deployed

in remote areas, face constraints such as scarce electricity and computing power. These

limitations pose significant challenges for deploying an efficient and reliable detection system.

Innovative solutions are needed to optimise the system’s performance within these resource

limitations, including considerations for low-power operation, efficient data processing, and

model optimisation suitable for edge computing environments.

Data Sampling and Model Improvement Post-Deployment: After deployment, the sys-

tem must efficiently sample and process the data collected from its operational environment.

This involves deciding which data to log, how to obtain necessary data from the edge com-

puter, and how to use it to refine the machine learning model. Additionally, periodic updates

to the model are needed to accommodate changes in environmental conditions, cassowary

behaviour, or traffic patterns. The challenge lies in developing a streamlined process for reg-

ular model updates that can be implemented remotely, ensuring the system remains accurate

and effective over time.

Our system effectively addresses these challenges through an innovative self-training ma-

chine learning pipeline that integrates cloud and edge computing technologies. The details

of the pipeline are presented in the following sections.
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3.2.3.A. Methodology

This section outlines the methodology behind our self-training framework for detecting large

animals on roads and roadsides. The pipeline leverages a combination of cloud and edge

computing technologies to create a scalable system adaptable to environmental conditions

and different animal species.

Web-sourced data

VLM

Mask Decoder
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Field-collected data

Input label
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Figure 3.6.: Workflow of our self-training machine learning pipeline. Initially, a VLM running on a cloud server

synthesises images of cassowaries and generates the pseudo-labels using the web-sourced cas-

sowary images and field background images. These images are used to train the initial animal

detection model that operates on the edge device. In the field, this edge model processes images

captured and selects relevant data to send back to the cloud server. The VLM then automatically

processes the received field data, generating pseudo-labels, which are used to fine-tune the edge

model. This iterative cycle progressively refines and improves the detection performance of the

edge model.

Figure 3.6 illustrates the workflow of the self-training machine learning pipeline, showcas-

ing the integration of cloud and edge processes that underpin our innovative approach to

roadside animal detection.

The core of our methodology revolves around the use of a VLM for Open-Vocabulary

Object Detection (OVD) [166], which operates on a cloud server. This VLM is first tasked

with synthesising realistic images of cassowaries, serving as the initial dataset for training a

closed-vocabulary animal detection model to be deployed in the field. These synthesised

images are important as they allow us to train the animal detection model without the need

for extensive, costly field data collection and labelling, addressing a significant hurdle in

machine learning for field applications.

Once trained, the closed-vocabulary animal detection model is deployed on an edge

device in field locations where cassowaries are likely to appear. For convenience, this closed-

vocabulary model is also referred to as the edge model for the remainder of the section.
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The edge device can operate under constraints of limited power supply, computing capacity,

and intermittent connectivity. In field operation, this edge device continuously processes

environmental data, selecting only the most relevant data to send back to the cloud server.

This selective data transmission is important to maintain efficiency, particularly in remote or

resource-limited settings.

In the cloud, the VLM takes over again, processing the incoming field data to generate

pseudo-labels. These labels are not only used to refine the training of the edge model

but also enhance its ability to adapt to new and changing data patterns. This dynamic

updating mechanism ensures that the model evolves in response to new information, thereby

maintaining its accuracy and reliability over time.

Overall, the pipeline is designed with generality and scalability in mind, making it applicable

for detecting various large animal species beyond cassowaries. Next, this section details

each component of the pipeline, from initial data synthesis to the continuous learning on

deployed edge devices, complemented by experimental results that highlight the efficacy of

our approach.

3.2.3.B. Efficient Animal Detection Model for Edge Deployment

An efficient animal detection model, optimised for the constraints of edge computing, is

essential in the real-time operation of the developed LAARMA system. This model is designed

to balance the trade-off between detection accuracy and computational efficiency. It utilises

state-of-the-art algorithms capable of processing images or video feeds in real time, even

with limited computing resources. The model is streamlined to reduce the computational

load while maintaining high accuracy in detecting large animals under various environmental

conditions. This efficiency is critical for ensuring the system’s reliability and responsiveness

in real-world deployment scenarios.

In this project, we have chosen YOLOv8 [194] as the edge model for our animal detection

task, owing to its remarkable computational efficiency and real-time processing capabilities.

This model stands out as a suitable choice for applications where real-time detection is cru-

cial, such as in wildlife monitoring and traffic management systems. An example of using

YOLOv8 in a traffic scene is presented in Figure 3.7. The choice of YOLOv8 is particularly ad-

vantageous in scenarios where quick decision-making is essential, as it allows for immediate

identification and response to potential hazards on the road. Also, the model’s streamlined

architecture reduces the computational burden, making its deployment feasible on roadside

units with restricted processing capabilities.
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Figure 3.7.: Testing the detection capabilities of YOLOv8 in a crowded road scenario. This showcases the

YOLOv8’s robustness and precision in detecting various classes of objects even in densely popu-

lated scenes.

Furthermore, the resolution of raw images from cameras is often higher than what is

sufficient for a YOLOv8 detector. This motivates the use of digital zooming to further improve

the object detection range without additional hardware costs. Figure 3.8 demonstrates the

detector’s effectiveness in accurately identifying objects from a considerable distance using

digital zooming.

3.2.3.C. Synthesising Data for Initial Training Phase

Training machine learning models to accurately detect objects requires a substantial volume

of high-quality data. For our project, this involves gathering numerous labelled images of

cassowaries directly from their natural habitats. However, the acquisition of field data on

cassowaries is challenging due to hardware limitations and stringent data transfer constraints.

Besides, the brief visibility of cassowaries, typically ranging from 20 to 50 seconds, further

complicates the collection of sufficient data for effective training.

To overcome these challenges, we adopted a strategy of using synthetic data to initialise the

self-training machine learning pipeline. This process involves running a VLM (in our case, a

variant based on OWL) and SAM to detect and segment cassowary instances in web-sourced

images, respectively. These segmented cassowary instances are then digitally inserted into
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(a) (b)

Figure 3.8.: Using the YOLOv8 detector for detecting distant objects. The digital zooming technique is adopted

in the system to enhance the detection range by cropping a smaller patch from the original image

and processing it through the detector. (a) shows the detection on the original image. (b) illustrates

that the detector effectively identifies traffic participants approximately 200 metres away after

applying the digital zooming to the original image.

Figure 3.9.: Results of synthesised cassowary visuals, where instances of cassowaries, obtained from public

sources, are seamlessly integrated into field backgrounds.

various field backgrounds. To enhance the realism of the synthetic data, we apply a Gaussian

blur to seamlessly blend the cassowaries with their backgrounds. Two examples are presented

in Figure 3.9. This method helps create a diverse dataset and simulates different lighting

conditions and cassowary poses, which are essential for enhancing the model’s robustness.

At the end of the initial phase, we deployed a YOLOv8 model trained using the synthetic

data in the field to systematically gather real-world images of cassowaries directly from their

natural environment. This approach not only facilitated the collection of valuable field data

but also enabled us to evaluate the performance of the first YOLOv8 model under real-world

conditions. As a result, this helped us refine the model’s detection capabilities and adapt it to

the field scenarios.
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3.2.3.D. Auto-Labelling and Iterative Field Model Improvements

OVD marks a significant departure from traditional closed-vocabulary methods in object de-

tection. Unlike closed-vocabulary object detection, which relies on a fixed set of categories

learned during training, OVD models are capable of detecting objects based on their appear-

ance descriptions. This allows for the recognition of a broader range of objects that may not

be present in the initial training dataset. These models are trained using contrastive learning,

which utilises pairs of text and images. This approach enables the model to form associations

between textual descriptions and visual representations, thereby enhancing its capability to

detect and describe objects beyond pre-defined categories. However, OVD models are often

large in size and require extensive computing resources, posing challenges for deployment

on edge devices with limited computational resources. Moreover, while they offer the ad-

vantage of detecting a wide range of objects, their performance may not always match that

of closed-vocabulary systems in detecting objects that are part of their training dataset. This

trade-off between versatility and specialised efficiency is a crucial aspect to consider in the

application of OVD models.

Figure 3.10.: Results of applying OVD to RGB images. The cassowaries in the images are accurately detected

and localised, showcasing the effectiveness of OVD in identifying and pinpointing specific species

within images.

In the developed LAARMA system, we used a VLM as a OVD method to automate the

labelling of field data collected using the deployed field model, i.e., YOLOv8. The VLM used

here is the same one applied during the initial training phase. Figure 3.10 presents an example

of using the VLM to auto-label cassowaries in RGB images. Subsequently, we utilise the data

labelled by the OVD system to fine-tune the field model. By repeating the above two steps,

the field model’s performance is iteratively improved during the field operation. The iterative
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Figure 3.11.: The initial training phase for the field model using the synthetic data and the subsequent iterative

model improvements using the auto-labelled field-collected data.

process is presented in Figure 3.11. Additionally, the VLM has shown impressive capability

across different sensor domains, such as thermal imagery, as demonstrated in Figure 3.12.

This second phase leverages the specificity and efficiency of a closed-vocabulary system,

fine-tuning it with the diverse and accurately labelled dataset generated by the OVD model.

This hybrid approach aims to combine the comprehensive detection capabilities of OVD

models with the focused efficiency of closed-vocabulary systems, creating a robust and

effective tool for wildlife detection in varying environments.

Figure 3.12.: Results of applying OVD to thermal images. It is shown that cassowaries are accurately detected

and localised within these thermal images.
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Figure 3.13.: Results of applying domain adaptation to thermal images. By employing transfer learning, the

detection model is fine-tuned to operate effectively within the thermal image domain.

3.2.3.E. Model Fine-Tuning and Domain Adaptation

To ensure the field model’s effectiveness in different environments and over time, fine-tuning

and domain adaptation are integral parts of the LAARMA system’s development. Fine-tuning

involves adjusting the model based on initial deployment feedback, optimising it for the spe-

cific characteristics of the areas where the system is installed. Domain adaptation, on the

other hand, focuses on modifying the model to maintain high performance despite changes

in environmental conditions, such as weather variations, different lighting conditions, or sea-

sonal changes in animal behaviour. Domain adaptation is also required when the machine

learning approach is applied in different sensor domains. This process involves continuous

learning from new data collected by the deployed units, enabling the field model to adapt

and evolve, thus maintaining its accuracy and reliability in the long term. For the LAARMA

system, one of the challenges is using YOLOv8 for detecting target objects in thermal images.

Figure 3.13 shows that domain adaptation is a promising solution to this challenge.

For roadside animal detection, we can exploit transfer learning to adapt a pre-trained

detection model, originally developed for different datasets, to a new specific detection task.
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Transfer learning is valuable in scenarios like ours where data specific to the target animal

species is limited. By employing this method, we leverage a model that has already been

trained on a large and diverse dataset to recognise general patterns and features, then fine-

tune this model for detecting large animals, such as cassowaries. This approach allows us to

utilise the knowledge the model has already acquired, significantly reducing the need for a

large amount of animal-specific training data.

For the transfer learning in our project, we used a technique that involves freezing some

parameters of the pre-trained model during the training phase for animal detection. This

means we keep certain layers of the neural network, typically the early layers responsible

for identifying basic, universal features like edges and textures, unchanged. Meanwhile, the

later, more task-specific layers are fine-tuned using our field-collected animal dataset. This

strategy not only reduces the computational load and the amount of required training data

but also helps prevent overfitting, especially given the relatively small size of our animal-

specific dataset.

Moreover, to further enhance the model’s performance in animal detection, we imple-

mented data augmentation techniques in our image processing pipeline. Data augmentation

involves modifying existing images in the dataset through transformations, such as rotations,

flipping, scaling, cropping, and changing lighting conditions. These alterations create a more

diverse training dataset, helping the model to become more robust and less prone to overfit-

ting. Training the model on this augmented dataset allows it to learn to recognise the specific

animal species under a variety of different conditions and perspectives, thereby improving its

ability to generalise and perform effectively in the real-world scenarios we aim to address.

3.3. System Testing

3.3.1 System Functions Tests

To validate the various features developed for the large animal detection system, we conduc-

ted a series of outdoor and laboratory tests under different conditions. The primary objective

of these tests is to assess the system’s effectiveness in real-world environments and to ensure

its reliability across different scenarios.
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Figure 3.14.: The St John’s Oval in USYD campus used for outdoor tests. The developed system was set up at

the location marked by the blue circle, and the sensors were pointing in the south-east direction,

as indicated by the orange arrow. The testing field stretches more than 230 metres long, from

the system’s location to the St John’s College car park in the south.

3.3.1.A. Outdoor Test Location

For our outdoor tests, we selected a sports field that extends over 230 metres within USYD

campus, as illustrated in Figure 3.14. This expansive space provides us with a suitable en-

vironment to rigorously test the working range of the sensor suite. During these tests, we

successfully demonstrated that the developed system is capable of identifying objects at dis-

tances exceeding 200 metres. This long-range detection capability is crucial for early warning

and timely response in real-world applications, especially in scenarios involving fast-moving

traffic or wildlife.
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3.3.1.B. Preliminary Test for Sensor Detection Range

A preliminary outdoor test was carried out on 5 October 2023, which was at the early stage

of the system development, to gain a better understanding of the effective working range of

the main detection sensors under their designated operational conditions. The tested sensors

included the RGB cameras and the thermal camera.

(a) (b)

(c)

Figure 3.15.: The camera images from the preliminary outdoor test. (a), (b), and (c) show images from the

medium-angle RGB camera, the telephoto RGB camera, and the thermal camera, respectively.

The camera images were processed by the pre-trained YOLOv8 model, with the detection results

overlaid on the images.

Some example images in the test are presented in Figure 3.15. Since the pre-trained

YOLOv8 model does not support the detection of cassowaries, the CoI in the test was selected

as “person”. Figure 3.15a and Figure 3.15b clearly demonstrate the capability of detecting

the CoI more than 100 metres and 200 metres away, respectively, during day time using the

RGB cameras.

Further testing was conducted to reveal the preliminary detection range of the thermal

camera at night. The pre-trained YOLOv8 model was trained using RGB images from COCO
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dataset, which does not contain thermal images. The main challenge in the nighttime test

is that the YOLOv8 model was used in a sensor domain different from the domain it was

trained in. This domain gap usually causes a significant performance drop for most machine

learning models. However, as Figure 3.15c reveals, the pre-trained YOLOv8 demonstrates

exceptional detection performance when working with thermal images, managing to detect

the CoI more than 150 metres away in the given testing scenario. There is still potential for a

range boost using a smaller FoV lens, a fine-tuned detection model for thermal images, and

other image processing techniques.

Overall, the preliminary test has shown the potential of the selected sensor suite and

YOLOv8 detectors to be adopted as an effective roadside animal detection solution.

3.3.1.C. Comprehensive System Test

A more comprehensive system outdoor test was conducted on 23 November 2023, to validate

various system features that had been developed up to that point. The tested sensors included

the RGB cameras, the thermal camera, and the LiDAR. The main system features tested were:

1. Image processing pipelines

2. Real-time YOLOv8 detection for each camera pipeline

3. Continuous data logging

Figure 3.16 depicts the image frames from the cameras and the YOLOv8 detection results.

As in the previous outdoor test, the object class “person” was selected as the CoI in the test.

The detection results from this test are similar to those in Figure 3.15, due to the use of the

same cameras and pre-trained YOLOv8 model in both tests. The main difference is that

the YOLOv8 detectors had been deployed onto the edge computing unit, and all the image

processing pipelines were running in real time in this test.

The outdoor test also served as an opportunity to test the continuous data logging feature.

The preview video and the associated data files were then retrieved from the system for

playback and analysis, as demonstrated in Figure 3.17.
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(a) (b)

(c) (d)

Figure 3.16.: The camera images and object detection results in the comprehensive outdoor test. (a)-(d) show

an image from the medium-angle RGB camera, its digital-zoomed image, an image from the

telephoto RGB camera, and a thermal image, respectively.

3.3.1.D. Testing the Event-Triggering Pipeline

Follow-up testing was conducted when the system development was closer to completion.

The following system features were tested in a laboratory environment:

1. Event-triggering pipeline

2. Event-triggered data logging

At the time of conducting the lab test, the YOLOv8 model had not been trained to support

the detection of cassowaries. Yet, the event-triggering functionality could still be well tested

using a different CoI. In this lab test, “tennis racquet” was set as the CoI, which means the

system triggers a detection event whenever it detects a tennis or badminton racquet within

its sensor FoV. The results are presented in Figure 3.18, showcasing the successful detection
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(a) (b)

Figure 3.17.: Playback of data logged in the comprehensive outdoor test. (a) shows a snapshot of the 2-by-2

image collage video recorded during the test, with the timestamp printed at the bottom-left corner

of the video. In (b), a screenshot visualises the recorded dense point cloud from the solid-state

LiDAR. It is clearly visible in the point cloud that structural features in the field, such as the rugby

goal posts around 100 metres away, the car park, and surrounding buildings more than 200

metres away, can be distinguished. The size of each grid in (b) is 10 metres.

of a badminton racquet being waved in front of the sensors and how the event-triggering

pipeline managed to pick up this event. The positive detection event then triggered the data

logging as expected. The signal will also trigger the roadside message display when the

system is deployed in the field. The testing results are visualised in Figure 3.18 through the

playback of the first logged data file for this particular event.

3.3.2 Fine-Tuned Detection Model Evaluation

Initially, our YOLOv8 model was pre-trained using the COCO dataset, renowned for its com-

prehensive scope in object detection, segmentation, key-point detection, and captioning. This

dataset contains approximately 328,000 images.

Subsequently, we employed transfer learning techniques to adapt the model for the cas-

sowary dataset. This dataset features synthetic images and field-collected images that are

automatically labelled by the VLM. Transfer learning can potentially affect the performance

of the model initially trained on the COCO dataset. To assess this impact, we conducted a

comparative analysis between the pre-trained and fine-tuned models.
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Figure 3.18.: Testing the event-triggering pipeline in the lab. It involved the system triggering a detection event

when it detected a CoI object, which in this test was a tennis/badminton racquet, using its sensors.

The top chart shows the Bayesian filtering results from the multiple image processing pipelines.

The curves indicate the probability of detecting the presence of the racquet within their sensor

FoVs. In this example, both the medium-angle camera image (blue line) and its digitally zoomed

image (yellow line) picked up the racquet in the scene, producing high probabilities of positive

detection. Meanwhile, the fused event detection outcome, represented by the red line, switched

from false (zero in the chart) to true (one). This positive event then triggered the data logging for

the event itself.
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3.3.2.A. Model Definitions

Pre-trained model: This refers to the original model trained exclusively on the COCO dataset.

Fine-tuned model: This model represents the adaptation of the pre-trained model, where

the majority of parameters are frozen, and the model is retrained on the cassowary dataset.

3.3.2.B. Evaluation Metrics

In our experimental evaluations, the primary measure used to assess the model performance

is the Mean Average Precision (mAP). The mAP metric is standard in the field of object detec-

tion, offering a comprehensive assessment by averaging the Average Precision (AP) scores

across all recall levels, which range between 0 and 1.

• Box(P) - Precision: This metric quantifies the accuracy of the bounding box predic-

tions, where higher values suggest a higher ratio of true positive detections to the total

number of positive predictions made by the model

• Box(R) - Recall: This metric measures the ability of the model to correctly identify

all available instances of objects, with higher values indicating a higher ratio of true

positive detections to the actual number of objects present in the dataset

• mAP50: This represents the Mean Average Precision calculated at an Intersection over

Union (IoU) threshold of 0.5, offering a balance between precision and recall for a

binary interpretation of object presence

• mAP50-95: This is an average of the Mean Average Precision values calculated at IoU

thresholds spanning from 0.5 to 0.95, in increments of 0.05. It is a more rigorous metric

that takes into account the precision of the bounding box alignment with the ground-

truth across a range of IoU thresholds, thus providing a more granular evaluation of

model performance

These metrics collectively offer a comprehensive view of model efficacy, accounting for

both the presence and precise localisation of objects within the images.

3.3.2.C. Preliminary Experiment Results

Utilising transfer learning, the fine-tuned model demonstrates consistency in performance

across all previously established detection categories, as shown in Table 3.1 and Table 3.2.
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Class Images Instances Box(P) Box(R) mAP50 mAP50-95

all 260 474 0.755 0.511 0.632 0.479

ambulance 260 64 0.917 0.844 0.904 0.752

bus 260 46 0.659 0.696 0.792 0.641

car 260 238 0.773 0.387 0.55 0.377

motorcycle 260 46 0.609 0.478 0.508 0.327

truck 260 60 0.703 0.333 0.525 0.387

cassowary 260 20 0.867 0.326 0.513 0.39

Table 3.1.: Performance metrics for object detection across various classes.

Class Images Instances Box(P) Box(R) mAP50 mAP50-95

person 1144 2701 0.659 0.6 0.618 0.373

car 1144 5728 0.642 0.427 0.648 0.392

bike 1144 95 0.472 0.558 0.488 0.267

motor 1144 322 0.731 0.835 0.699 0.523

airplane 1144 66 0.654 0.409 0.477 0.386

bus 1144 18 0.371 0.198 0.164 0.119

Table 3.2.: Summary of object detection model performance on thermal image datasets.

This consistency is maintained while successfully integrating the detection of a new class,

namely, cassowary. This integration did not compromise the model’s effectiveness in identi-

fying and segmenting previously learnt classes, indicating a robust adaptation of the model

to new data without losing its proficiency in original tasks.

The performance metrics, particularly the mAP, remained stable or showed minimal vari-

ance, suggesting that the transfer learning process effectively preserved the model’s original

capabilities. Additionally, the model’s ability to detect the cassowary with high precision and

recall highlights the effectiveness of our fine-tuning approach in expanding the model’s de-

tection repertoire without detracting from its existing strengths. Note that these preliminary

results achieved for cassowaries in Table 3.1 are based on only 20 cassowary instances.

More comprehensive and real-world evaluation results after the model was trained with

field-collected data are presented in Section 7.2.2.
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3.4. Conclusions

In this chapter, we have addressed the development of a state-of-the-art system designed to

detect roadside large animals, enhancing road safety and wildlife preservation. The devel-

opment of this system encompasses several key challenges, including the need for efficient

processing and adaptability to different scenarios. Our approach integrates cutting-edge

hardware with a powerful machine learning-based animal detection approach, making it

both cost-effective and efficient for real-time applications. Utilising a suite of advanced de-

tection sensors, the system is designed to operate in various environmental conditions, from

daylight to nighttime settings.

The core strength of this system lies in its innovative use of the self-training machine

learning pipeline, enabling it to learn and identify any large animal species. Data plays a

crucial role in the effectiveness of any machine learning system. Our approach includes an

auto-labelling feature based on OVD, thereby enriching the training dataset with minimal

human inputs. The model undergoes further enhancement through fine-tuning and domain

adaptation. These processes are critical in ensuring the model’s effectiveness across different

environments and conditions. The application of the field model, i.e., YOLOv8, ensures rapid

and accurate detection, essential for timely responses in dynamic road situations.

The extensive testing and evaluation of the developed large animal detection system have

demonstrated its capability and reliability across various scenarios, highlighting its potential

as an effective solution for roadside animal detection. Outdoor and lab tests have validated

the system’s ability to accurately identify objects at long distances, a critical feature for

providing early warning and response in real-world situations. A key aspect to the system

development is the integration of the YOLOv8 model, which, although initially trained on

standard RGB images, showed promising performance in detecting objects in thermal images

during nighttime tests. The comprehensive system test further validated the functionality

of image processing pipelines, real-time object detection, and continuous/event-triggered

data logging, all running effectively on an edge computing platform. The fine-tuning of

the detection model using transfer learning techniques allowed for the successful addition

of a new detection class, “cassowary”, without compromising the model’s existing detection

abilities. This indicates a robust model adaptation to new data while maintaining proficiency

in original tasks. The stability of performance metrics, particularly the mAP, across various

detection categories, have shown the effectiveness of our approach in expanding the model’s

detection capabilities. These results show that combining advanced sensing technology with

machine learning creates an efficient and reliable system that can enhance both road safety

and wildlife conservation.
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4.1. Introduction

4.1.1 Background

AVCs are associated with substantial costs to individuals, communities, and the environment

each year. In 2004, it was reported that crashes involving animals caused over $1 billion in

vehicle damage annually in the United States [2]. The human and societal costs of injury,

rehabilitation and death cannot be quantified, nor can the effects of AVCs on conservation

efforts. Analysis of crash data in the US between 1965 and 2017 found that there was a

four-fold increase in animal fatalities resulting from AVCs in that time [3]. In countries such

as Australia, many native and protected species are particularly vulnerable [2].

The attitudes of motorists and their knowledge of how best to respond when an animal

in is on the road has been identified as a contributing factor to AVCs occurrence. For ex-

ample, a recent large-scale survey in Hungary explored the habits and attitudes of 1942

drivers regarding AVCs [5]. The results showed that drivers with less experience and fear of

AVCs drove with more confidence, at higher speeds and less vigilance. Additionally, results

showed that as years of driving experience increased, there was an the perceived ability to

handle unexpected driving situations (such as an animal encounter) also increased. Perhaps

unsurprisingly, it was also found that drivers who reported a higher regard for the import-

ance of nature conservation or traffic safety in relation to preventing AVCs reported driving

with more care and attention [5]. Other research has suggested that a lack of knowledge

about the appropriate or correct course of action in the event of an animal encounter also

influences potential AVCs [2, 4, 5]. The nature of AVCs avoidance manoeuvres that a driver

or rider may need to implement, such as swerving to avoid an animal, can also increase

the likelihood of a serious injury crash [4]. While research has shown that the safest solu-

tion for motorists is to simply slow down and (unfortunately) hit the animal, in a study of

crash mechanisms involved in 366 AVCs in Australia, Wilson et al. [7] reported that 58.5%

of AVCs involved the motorist swerving to avoid impact with the animal. Swerving can often

result in loss of control, rollovers and/or colliding with other objects, such as trees, poles, and

guardrails [2, 7].

Road signage is a commonly implemented measure to alert drivers to risks they may en-

counter in the road environment. While static road signage has been shown to have some

effect in mitigation the risk of AVCs (e.g., [48]), a recent review investigating the effectiveness

of road warning signage by Tryjanowski et al. [45] suggests that principally, the main re-

sponse elicited by a motorist to a warning sign is merely recognition as opposed to motivating
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behaviour change and suggest that further research is required to enhance the effectiveness

of such signage to extend beyond mere recognition to ensure action is taken. VMS may

provide a more effective means to alert drivers to the presence of animals and encourage

safer driving behaviours due to the ability to display a series of changing messages across

a single LED screen. Currently, research examining the effectiveness of VMS in influencing

driver behaviour is limited. However, a recent Australian study investigating the effects of

roadside VMSs displaying dual-screened messaging aimed to encourage motorists to stay

within the speed limit showed that the proportion of road users exceeding the posted speed

limit was consistently lower when the anti-speeding VMS were displayed [60]. The results

also showed a residual effect, whereby a reduction in mean speeds and lower proportion of

drivers exceeding the speed limit continued to be observed for the week following the re-

moval of the VMS [60]. These findings, while not related to AVCs suggest that roadside VMSs

which not only alert motorists to the presence of a potential road hazard (such as nearby

animal), but also offer driving strategies (such as slowing down) to navigate the situation

safely, may reduce the risk of road collisions.

The current program of research, insofar as the messaging component of the project,

consisted of two studies with the purpose of developing and evaluating messages that sought

to, (i) alerts motorists that an animal, specifically a cassowary, had been detected in the road

environment, and (ii) encourage motorists to slow down and scan the road environment. This

project applied the SatMDT [1], see Figure 4.1, to develop and evaluate the messaging. As

shown in Figure 4.1, the SatMDT includes four steps: Step 1: getting to know the audience,

Step 2: development of the message content, Step 3: testing the message content, and Step

4: evaluating the message content. Study 1 drew upon Step 3 of the framework, while Study 2

drew upon Step 4. The SatMDT has been successfully applied in previous research to develop

and evaluate anti-speeding messages [195], messages designed to reduce smartphone use

among young drivers (e.g., [196, 197]), and messages promoting intentions to use connected

vehicle technologies [57] to name but just a few applications (see [58] for more examples).

4.1.2 Method

Study 1 comprised eight focus groups with 36 drivers (Mean age = 42.72 years; 19 females)

and explored their perceptions towards a series of message concepts designed to appear

on roadside VMSs. The findings from the focus groups were used to develop four message

concepts to be tested in Study 2. Study 2 was a between-groups design and comprised 557

drivers (Mean age = 50.29 years; 350 females) who completed an online survey. Participants

were randomly allocated to one of five conditions (i.e., to view one of the four message
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Figure 4.1.: The Step approach to Message Design and Testing [1].

concepts or the control, no message condition). Participants allocated to the four message

conditions were asked about their perceptions towards the message content, responded to

items relating to message acceptance (i.e., relating to how directly and indirectly effective the

messages were), and asked about their preferences regarding the driving strategies offered

as part of the message. The study was led by Prof Ioni Lewis, with assistance from Ms Nyree

Gordon and Ms Melinda McDonald.

4.1.3 Key Findings

Overall, all four message concepts evaluated in Study 2 performed consistently well across all

direct and indirect measures of effectiveness, which suggests that the implementation of any

of these concepts would likely have the intended effects on driving behaviours. However, there

were instances where some concepts appeared to outperform others on specific measures

and suggests that there is scope to selectively apply messages according to the parameters

that are considered of highest priority. For screen 1 of the message, a greater portion of

participants across both studies reported that it would be more effective to identify the type

of animal on the signage compared to participants who reported that the animal should not

be identified. In Study 1 (where participants were able to compare multiple message concepts),

most participants preferred the combination of both text and image to specify the type of

animal. For screen 2, there were no significant differences in how useful participants perceived

the four driving strategies to be; however, participants across both studies commented that the
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slowing down strategy should be presented before the scanning strategy. Participants across

both studies emphasised that it was important that motorists understood that the message

was a real-time warning and expressed concerns that motorists might become complacent

if the sign were to remain activated and/or they did not come across any animals while

driving. This provided support for leaving the sign blank and only ‘flashing’ a message when

an animal had been detected. The findings also supported the potential value of future use of

this technology being promoted through use of public education campaigns so that motorists

could understand what it is and how it works.

4.1.4 Chapter Structure

Section 4.2 outlines the findings from Study 1 which consisted of eight in-person focus groups

to test a series of 20 message concepts (see Appendix A for the message concepts). The

findings from Study 1 were used to inform the develop of four message concepts to be eval-

uated in Study 2. Section 4.3 outlines the findings from Study 2, which involved evaluating

the four message concepts in terms of their effectiveness via an online survey with a larger

sample of motorists. Section 4.4 presents the overall conclusions emerging from this pro-

gram of research as well as practical consideration for implementing the messaging in the

forthcoming driving simulator study and the on-road field trial in North Queensland, both

studies within the subsequent research to be conducted in the overarching LAARMA project.

4.2. Study 1

4.2.1 Overview

Study 1 explored participants’ responses to 20 message concepts designed to be displayed

on a VMS to inform motorists that an animal (specifically a cassowary in the context of this

research) has been detected on or near the road (Step 3 of the SatMDT). This step of the

conceptual framework focuses on ensuring that members of the intended target audience

respond to the messaging as anticipated. The message concepts were developed based

on broader literature regarding the use of roadside messaging alerting road users to the

presence of animals and drew upon key constructs (i.e., emotional appeal and modelling

of behaviour strategies as outlined in Step 2 of the SatMDT) that have been demonstrated

to enhance message effectiveness (e.g., [60]). The message concepts developed by Prof
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Ioni Lewis [IL] for Study 1 were designed to alert passing motorists that an animal had been

detected in the vicinity and to encourage motorists to engage in two key driving behaviours—

(1) slow down, and (2) scan the road environment. In line with Step 3 of the SatMDT, the

purpose of Study 1 was to test whether the message concepts elicited the intended response

by the target demographic (i.e., Australian motorists). Specifically, the concept testing sought

to determine whether the messages were (a) effective in informing motorists that the message

was a real-time warning that an animal was in the immediate road vicinity, and (b) whether

the driving strategies offered as part of the message would motivate motorists to slow down

and scan the road environment as directed. The message concepts tested in Study 1 are

presented in Appendix A.

4.2.2 Method

4.2.2.A. Participants

Participants were recruited by Farron Research, an Australian market recruitment company.

Participants were required to be aged 18 years or older, reside in Australia, hold a valid

motor vehicle, or motorcycle licence, and drive/ride for at least one hour per week. Thirty-

six drivers were recruited in November 2023 to participate in one of eight in-person focus

group sessions to discuss the message concepts. Participants were aged between 23-77

years (Mean age = 42.72 years, SD = 16.31). All participants, resided in Queensland, held

an open driver licence, and reported holding a licence between 6 and 60 years (M = 23.83,

SD = 14.90). Participants drove for an average of 11.22 hours per week (SD = 10.29) with

most participants reporting driving between 5 to 12 hours (55.6%, n = 20). All participants

received a gift voucher for AUD 80 for participating in Study 1.

Demographic Survey

The brief demographic survey (see Appendix B) collected information about participants’

gender, age, state of residence, postcode, type of driver licence, and how long they have

held their licence. On average, participants completed the questionnaire in 5 minutes.

Focus Group

Eight in-person focus groups were conducted at the QUT, Kelvin Grove campus between

20 and 23 November 2023. The focus groups were guided by a semi-structured interview

schedule (see Appendix C) which comprised questions consistent with well-established mater-
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ials and procedures used when undertaking concept-testing in accordance with the SatMDT

[1]. The purpose of these focus groups was to concept-test a series of, predominantly dual-

screened, message concepts to be displayed on VMSs. Each focus group was audio recorded

and facilitated by two researchers (Melinda McDonald [MM] and Nyree Gordon [NG]). The

focus groups consisted of between 3 to 5 participants and, on average, group discussions las-

ted 1 hour. Salient elements of the focus group discussions and quotes offered by participants

were noted excluding any personally identifying information by NG during the discussion.

4.2.2.B. Procedure

The university’s Human Research Ethics Committee approved the study prior to its commence-

ment (QUT Reference Number: 7663). Consent was obtained by participants on arrival by

completing and signing a consent form before the focus group commenced. Participants

were first asked to complete the demographic questionnaire prior to participating in the

group discussions. In the group discussions, the message concepts were presented to parti-

cipants visually, as a VMS-style mock-up, via a power-point presentation projected on a large

screen. To investigate the legibility of the messages in the VMS format, the group facilitators

refrained from reading the messages out loud unless required. The message concepts were

presented in three sections: (1) Text Only, (2) Image and Text, and (3) Image Only. After

presentation of a message concept, participants were invited to share their perspectives to-

wards the message and to offer suggestions to improve the message content. The same

process was repeated for a total of eight Text Only message concepts, six Image and Text

message concepts, and eight Image Only message concepts. All message concepts that were

tested have been included in Appendix A.

4.2.3 Results

4.2.3.A. Focus Group

The following section presents the findings from the focus group discussions. Specifically,

it will detail participants’ perceptions about each of the VMS messages concepts that were

explored. Guided by questions in the interview schedule, thematic analysis was undertaken

based on post-focus group discussions amongst the project team and aspects considered un-

clear and/or requiring further justification were identified and resolved in the following focus

groups. The findings presented herein include de-identified quotes, as noted by NG during the

group discussions, as supporting evidence of themes. Quotes are attributed to participants in
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a way to protect their confidentiality (i.e., only reported in relation to a participant’s gender

and their approximate age).

Comparison of Responses Between Participants

Overall, most messages were associated with relatively consistent responses from the

study participants irrespective of their age and gender. Message C of the Image and Text

concepts appeared to elicit some mixed responses across age groups, with older participants

tending to react negatively to the Screen 2 message (‘Reduce your speed. Be alert.’), while

younger participants tending to be more in favour of the message. However, as the reasons

offered for these reactions were not consistent within age-similar groups, this discrepancy is

likely due to individual preferences rather than a broader age-related effect. Moreover, the

most frequent negative commentary about this message across all participants was that there

were too many words, which suggests that shortening the message may prompt more positive

responses. In addition, younger participants tended to respond favourably to Alternative Text

Message C1 (‘Hazard ahead’), while most older participants were indifferent to the message

or likened it to a road works sign. However, as there was an overarching preference for

other message concepts that were tested, it was deemed unnecessary to investigate these

differences regarding this one particular message any further. Hence, the following summary

of key findings pertains to the overall sample. In addition, as there were no dual-screen

message concepts (i.e., a Screen 1 and Screen 2 combination) that were preferred as a set in

and of themselves, the findings for the messaging presented on Screen 1 and Screen 2 have

been considered separately in each section.

Text Only Message Concepts

Screen 1

There were five different Text Only message options for Screen 1: Cassowary About (Mes-

sages A-D), Help Protect Our Cassowaries (Message E), Please Protect Our Native Fauna (Mes-

sage F), Cassowaries About (Alternative Text 1), and Cassowary Recent Sighting (Alternative

Text 2). The Text Only messages shown during the focus groups can be found in Appendix A

(Figure 8.1 and Figure 8.2). For Messages A-D and Alternative Text 1, the consensus amongst

participants was that ‘cassowary’ (singular) was easier to read and understand than ‘cas-

sowaries’ (plural), although a small number of participants reported that ‘cassowaries’ de-

noted more of a hazard. All participants also agreed that the word ‘about’ was ineffective,

citing that the term was “vague”, relied on the drivers understanding Australian vernacular,

and did not imply the presence of a real-time hazard. Participants frequently offered ‘ahead’,

‘detected’, or ‘seen’ as alternatives to better relay the immediacy of the message. Messages
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E (Help Protect Our Cassowaries) and F (Please Protect Our Native Fauna) also consistently

elicited negative responses, with participants stating that the messages were more like con-

servation campaigns, rather than an active warning that an animal had been detected on or

near the road. Additionally, participants reported that the number of words used made the

sign look busy and difficult to read. Most participants also agreed that the Alternative Text

2 message (Cassowary Recent Sighting) was vague, and that the term ‘recent sighting’ could

be interpreted to mean different time frames (e.g., hours, days, weeks etc).

“I’m waiting for the next screen to tell me where I can donate money to.” (Male, mid-40s)

“Looks more like a 24/7 campaign sign.” (Female, mid-30s)

Screen 2

There were five different Text Only message options for Screen 2: Slow Down. Look

Around. (Message A), Slow down. Monitor ahead (Message B), Scan. Check. Slow Down

(Messages C/E) and Look Out and Slow Down (Messages D/F). Of these messages, most

participants indicated a preference for Message D/F, citing that it was concise and offered

clear instructions using plain English. Many participants also suggested that the ‘and’ be

removed and to reverse the order of the statements so that ‘Slow down’ was presented first.

Most participants reported disliking Message A (Slow Down. Look Around). The ‘Look Around’

component raised concerns that the direction could be interpreted as an invitation for drivers

to look for the animal as if it were an attraction, rather than a driving hazard. Message

B (Slow down. Monitor ahead) received mixed responses, with some participants reporting

that the term ‘Monitor ahead’ provided clearer direction than ‘Look Around’ (Message A).

However, most did not like the word ‘monitor’ for reasons including that it might not be easily

understood by those who do not speak English as their first language, it implied that the

driver’s behaviour was being monitored, and that it may cause confusion due to the word

having multiple meanings (e.g., monitor lizard). Most participants reported liking Message

C/E (Scan. Check. Slow Down) more than A and B because it was short and simple; however,

they also reported that ‘scan’ and ‘check’ meant the same thing and it was redundant to

include both. Of the two words, ‘scan’ was preferred.

In addition, there were six Alternative Text message options offered at the end of the

section: (A) Hazard ahead, (B) Watch out for animals on roads, (C) Slow down. Wildlife on

road, (D) Be alert. Wildlife on road, (E) Be alert. Wildlife detected, and (F) Wildlife on road.

Proceed with Caution. Of these alternative wordings, messages A, E, and F generated the
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most discussion. As previously noted, Message A (Hazard ahead) was generally preferred by

younger participants. Those in favour of the message (regardless of age group) stated that

the message made it clear that the animal (whose presence was noted on Screen 1) posed a

potential driving threat. However, most participants preferred Message E (Wildlife detected),

specifically the word ‘detected’ as it was seen to clearly indicate that the animal was in the

immediate vicinity. Many participants went on to suggest that ‘detected’ ought to replace

‘about’ in the Screen 1 messages. Several participants also liked Message F (Wildlife on road.

Proceed with Caution) as the ‘wildlife on road’ component made in clear that the message

was not a general warning about animals inhabiting the area, and the ‘proceed with caution’

component gave drivers the freedom to adjust their driving behaviour according to what

they believed would be the safest way to approach the situation.

“E gives a real sense of immediacy. It’s effective.” (Female, younger driver)

Image and Text Message Concepts

Screen 1

There were four message options shown for Screen 1 in the Image and Text section: An

image of a cassowary with no text (Message A), an image of a smaller cassowary with the

text ‘Cassowary About’ (Message B/D), the same cassowary image with the text ‘Cassowaries

About’ (Message C/E), and an image of a cassowary with the text ‘Help Keep Them Safe’

(Message F). The Image and Text messages shown during the focus groups can be found

in Figure 8.3 of Appendix A. Message A received mixed responses. Some participants pre-

ferred the image citing that it was attention-grabbing and could be “processed more quickly

than words”. While others reported that the image alone lacked urgency and did not make

it clear that the animal has been detected and could be interpreted as “more sight-seeing

advice”. For Messages B-E, it was unanimously agreed that the smaller cassowary did not

look like (or depict the scale of) the animal and might lead to confusion for motorists. Like

the responses offered in the Text Only section, participants reported the same preference for

the singular ‘cassowary’ as opposed to ‘cassowaries’ and concerns about the word ‘about’.

However, most participants indicated that having an image and text on Screen 1 would be

useful for drivers to understand what animal to expect in the area, with many participants

suggesting similar responses that were offered in the previous section (e.g., ‘Cassowary de-

tected’). All participants reported disliking the (single-screen concept) Message F, stating that

it was reminiscent of a “activist” or “Greenie” sign.
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Screen 2

Participants were shown five options for Screen 2. Messages A, B, D, and E were the

same as messages offered in the previous Text Only section. Participants did not report any

changes in preferences for these messages when paired with the new Screen 1 image or

image/text message. Message C read ‘Reduce Your Speed. Be Alert’. As reported in the

previous section “Comparison of Responses Between Participants”, this message received

mixed reactions. Those in favour of the message found it to be “compelling”, “clean” and

“tangible”, and that it would encourage them to “take more notice” of the signage. Whereas

those who disliked the message considered it to be “vague”, “not enforceable”, and too similar

to road works signage. However, it was commonly mentioned (from both the participants

who liked the message and those who did not) that the message had too many words, with

some participants suggesting that ‘your’ could be removed.

“The picture is processed more quickly than words and makes me more likely to read the

next message. And we always remember the last thing we read.” (Female, mid-20s)

Image Only Message Concepts

The Image Only section consisted of eight single-screened messages featuring a cassowary

pictogram on each, four of which were monochromatic (amber, as used for the messages in

the previous sections) and the other four incorporated additional colours (see Appendix A,

Figure 8.4). Of the monochromatic images, most participants preferred Message A3 stating

that the larger cassowary would be useful to “visualise” the size of the animal, and that the

exaggerated crest made it look “scarier” and “dangerous”. One participant preferred Mes-

sage A2 stating that it was a more accurate depiction of a cassowary, and no participants

preferred Message A1 or A4. Of the coloured images, most participants preferred Message

B1, with some participants suggesting that Message B1 could be improved by having Mes-

sage B2’s larger crest. Specifically, participants liked the larger scale of the cassowary and

commented that the use of blue and red on the neck would help drivers identify the animal.

Many participants also reported liking Message B1, stating that the cassowary’s white body

would be eye-catching. However, others expressed concerns that the additional bright col-

ours looked “touristy” (as opposed to the mostly amber Message B1 which looked more like

a “warning”), and that the white body might cause confusion given that cassowaries do not

have white plumage. No participants preferred Message B3 or B4. All participants agreed

that an Image Only message would not be as effective as a text plus image message, having

an image alone does not suggest that there is a potential hazard or danger ahead and may
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be seen as an invitation to drivers to search from the cassowary out of interest.

“The colours in B1 and B2 are better for identifying, if people don’t know what a cassowary

looks like.” (Female, mid-50s)

General Comments

In addition to discussing the specific message concepts shown during the focus groups,

participants were also invited to share their suggestions to improve the messages and express

any other ideas that may be of interest to the research. Three themes were identified from

these discussions—(1) whether the message should refer to a specific animal, (2) ensuring

public awareness of the animal detection technology, and (3) suggested improvements for

the design of the VMS. These themes are discussed below.

Reference to a Specific Animal

Some participants questioned whether it was necessary for the signage to indicate the

presence of a specific animal (i.e., cassowary), and suggested that using a broader term

such as ‘animal’, ‘large animal’, or ‘wildlife’ might be more effective. Specifically, these

participants expressed the following concerns: (1) that some drivers might try to search for

the animal (and in the process, potentially pose a road hazard for other drivers by slowing

excessively or stopping), (2) the technology responsible for detecting the cassowary may fail

to recognise other nearby animals (which may also create a road hazard), and, consequently,

(3) drivers may become so focused on avoiding a cassowary that they fail to notice other

driving obstacles and hazards. However, other participants reported that by displaying the

specific animal on the sign, it would enable drivers to “know what to look for”, where to

look for it (e.g., looking closer to the ground for smaller animals), and to adjust their driving

behaviour according to their understanding of the behaviours of the specified animal. All

participants, regardless of their preference for a specific or generic term for the animal,

agreed that it was important that the message implied the real-time presence of the animal

and the potential danger it posed.

Public Awareness of Animal Detection Technology

Most participants commented that raising public awareness of the animal detection tech-

nology would be “necessary” to accompany the implementation of the signage to ensure

drivers were aware of the real-time nature of the message. Some participants indicated that

the public awareness campaign should be delivered via digital media (e.g., television, social
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media), while others suggested that static road signage in nearby areas (e.g., billboards) may

be useful. One participant suggested information leaflets could be distributed to individuals

hiring rental cars in relevant areas to alert tourists to the technology and associated mes-

saging. In lieu of a public awareness campaign, some participants suggested additions to

the signage that would better indicate that real-time nature of the message. Suggestions

included showing the time that the animal was last seen, a counter showing the number of

times the animal had been detected in a specified time frame (e.g., 1 hour, 24 hours), or a

colour coding system that indicated how close the animal is from the signage. However, the

addition of such aspects would need to be done so carefully as a consistent finding was the

desire for succinct, easy-to-read and understand message concepts so any additional details

may compromise the simplicity and effectiveness of the messaging.

Improvements to VMS Design

While evaluating the message content, participants often suggested improvements to the

VMS design. Of the design elements, the colour scheme was most frequently commented

upon. Most participants expressed a preference for incorporating colours other than amber

for “emphasis”, and to combat “sign fatigue” by differentiating these signs from roadworks

and other common road signage. Many participants suggested making key words (e.g., de-

tected, slow down) red to promote urgency, while a small number of participants suggested

green due to its association with existing wildlife signage. However, some participants ex-

pressed concerns that additional colours/specific colours could affect readability for some

drivers (e.g., older drivers, individuals who experience colour-blindness). Participants also of-

ten commented on the legibility of the text, noting that minimal words and thicker lines were

preferred to enhance readability. Overall, participants did not frequently comment on the

use of uppercase versus title case lettering, and the comments that were offered were mixed.

Some participants reported disliking uppercase noting that it was “too much” and seemed

“rude”, while others considered uppercase easier to read and denoted the need for action.

Title case was generally well received, especially for the Screen 2 “informative” messages.

A small number of participants also commented that the use of full stops in the signage was

“weird” and “unnecessary”, and if any punctuation were to be included, it ought to be an

exclamation mark following key statements (e.g., Slow down!).

4.2.4 Summary of Study 1

Study 1 involved concept-testing, conducted in accordance with the SatMDT, of 20 message

concepts designed to be displayed on a VMS. The concepts were designed to inform motorists
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that an animal (specifically a cassowary in the context of this research) has been detected

on or near the road. The following points highlight the main findings from Study 1:

• For Screen 1, most participants agreed that including text and an image of a cassowary

would be most effective (relative to the text-only or image-only options). Most parti-

cipants also reported disliking the term ‘about’ (e.g., ‘Cassowary About’), and offered

alternatives such as ‘detected’, ‘ahead’ and ‘seen’ which were perceived to make to

clearer than a cassowary was in the immediate vicinity. A small number of parti-

cipants reported a preference for using a broader term (e.g., animal, wildlife) rather

than identifying the specific animal (i.e., cassowary). However, most agreed that nam-

ing the animal would be more useful, and that the singular term “cassowary” was

preferred to use of the plural “cassowaries” due to its brevity and legibility.

• For Screen 2, most participants agreed that the strategy ‘Look Out and Slow Down’

would be most effective, with the caveat that ‘and’ should be removed to make the

statement more succinct. Participants offered mixed responses to the similar strategy

‘Reduce your Speed. Be alert.’, with some responding positively and others negatively.

However, most participants agreed that regardless of the specific wording, the directive

to slow down should be presented first (i.e., at the top of the screen) and emphasised

that the language used should be short, sharp, and written in plain English. Regarding

the cassowary images, participants unanimously reported a preference for the taller

cassowary compared to the shorter cassowary, and most participants reported a pref-

erence for the cassowary to have a larger crest compared to the smaller crest. When

comparing the monochromatic (amber only) images to the coloured images, most

participants agreed that the use of colour was more attention-grabbing and, by high-

lighting the distinct colourings of the cassowary’s neck, would help motorists identify

the animal.

• In terms of design elements, several participants suggested the use of different colours

for the text to make the messages more “striking” and set them apart from commonly

observed road signage (e.g., roadworks). However, it is difficult to determine which

colours may be most suitable for this purpose. For that reason, retaining the amber

font may be appropriate for the trial and future research could potentially investigate

the effects of different font colours. Some participants noted a preference regarding

the typography (e.g., uppercase versus title case); however, most participants were

indifferent provided that the text was legible, and that the message was short, sharp,

and simple. It appeared that a combination of font sizes may be best for the messaging

in this trial – with uppercase on Screen 1 (to alert motorists to there being a cassowary
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detected) and the behavioural strategies on Screen 2 being presented in title case.

• Overall, regardless of their preferences for the message content (on either screen),

most participants emphasised that it was important that the message must convey the

real-time nature of the warning, and that the presence of the animal is understood

to be a road hazard (rather than a local attraction). Most participants also suggested

that the implementation of the signage should be accompanied by a public campaign

which promotes the use of the animal detection technology to help drivers understand

the specific purpose of this signage (acknowledging that this campaign still may not

always reach all who may be driving in the area such as tourists).

4.3. Study 2

4.3.1 Overview

Study 2 evaluated the effectiveness of four message concepts (as per Step 4 of the SatMDT)

that were developed according to the findings from the previous concept-testing study. This

final step of the SatMDT is designed to measure both acceptance (via measures of attitudes,

intentions, willingness, and message effectiveness) and rejection of messaging. An additional

outcome measure includes the third-person effect (TPE). The TPE refers to the extent to which

a participant perceives themselves and others (in this case, other motorists) to be influenced

by a message. There are two types of TPEs: the classic TPE and the reverse TPE. The classic

TPE refers to the extent to which an individual perceives that the message will have more

impact on others rather than on themselves and the reverse TPE refers to the extent to which

an individual perceives that the message will have more impact on themselves than on others

[198, 199]. From a message effectiveness perspective, reverse TPEs are encouraging as they

indicate greater perceived influence on oneself than others and evidence has shown such

TPEs to be associated with increased reported intentions to adopt a message’s recommend-

ations [198].

The findings from Study 1 revealed that there was some concern regarding whether (a)

drivers would understand that the message was a real-time warning (as opposed to a gen-

eral or advisory message), and (b) that the message might inadvertently encourage risky

behaviour through motorists changing their behaviour, such as stopping suddenly on the

road in an effort to see the cassowary (as per the message). Thus, to further investigate

these concerns, Study 2 also assessed some relatively unique outcome measures of mes-
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sage effectiveness relevant for this specific context and which were motorists’ thoughts about

the perceived immediacy of the message and the extent to which they thought they may

adversely change their driving behaviour upon seeing message.

4.3.2 Method

4.3.2.A. Participants

A total of 557 participants aged between 19-89 years (Mean age = 50.29 years, SD = 13.96)

were recruited by Farron Research, an Australian market research recruitment company.

Participants completed the online survey between 7 December to 13 December 2023. As per

the previous message concept-testing study (Study 1), participants were required to be aged

18 years or older, reside in Australia, hold a valid motor vehicle or motorcycle licence, and

drive/ride for at least one hour per week. All participants received AUD15 for completing

Study 2. Like the participant sample in Study 1, most participants held an open licence

(96.4%). Participants in Study 2 reported holding their driver licence for between 1-73 years

(M = 30.87 years, SD = 14.36) and reported driving an average of 9.04 hours per week (SD

= 7.86). The socio-demographic characteristics of participants are reported in Table 4.1.

4.3.2.B. Design

Consistent with the methods and material recommendations of the SatMDT [1], a between-

groups design was employed meaning that participants were randomly assigned to view

only one of four message concepts (experimental condition) or were not shown a message

(control condition). The intent behind exposing participants to one message only was to

elicit responses based on the message they had seen, rather than offering comparative

judgements regarding the effectiveness of different messages they had seen [1]. Mock designs

of how the messages would appear as a roadside VMS, the intended display medium for the

project’s subsequent on-road trial, were created and used as the stimulus materials tested

in the study. The four message concepts that were tested are presented in the section that

follows (noting again that these were identified as a result of the findings from Study 1).

Consistent with conceptual recommendations, the messages all contained information that a

cassowary (or animal, in the case of Concept 3) had been detected to first raise attention of

the issue at hand. Then, this information was followed by clear and tangible strategies (i.e.,

aligning with the concept of ‘response efficacy’ [55]) as to what a motorist could and should

do in that situation. As Figures 4.2, 4.3, 4.4, and 4.5 show, in most instances, the messages
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n %

Gender

Female 350 62.8

Male 206 37.0

Other 1 0.20

Prefer not to say 0 0.00

Australian state or

territory of residence

Queensland 98 17.6

New South Wales 78 14.0

Victoria 87 15.6

Australian Capital Territory 78 14.0

South Australia 80 14.4

Tasmania 65 11.7

Western Australia 41 7.4

Northern Territory 30 5.4

Licence Type

Learner 3 0.5

Provisional 1 6 1.1

Provisional 2 6 1.1

Open 540 96.4

International 2 0.4

Table 4.1.: Socio-demographic characteristics of participants in Study 2.

involved text only with the exception to this being Concept 2 which also incorporated a figure

of a cassowary accompanying the words “Cassowary Detected”.

As previously noted, participants were randomly allocated to one of the four experimental

message conditions or the control (no message) condition. Table 4.2 lists the number of par-

ticipants assigned to each message condition and the gender proportion and average age of

participants in each condition. As shown in Table 4.2, the average age of participants in each

condition ranged from 49 to 51 years, indicating that Study 2 captured the perspectives of an

older cohort. However, based on the findings of the focus groups in Study 1 (see subsection

“Comparison of Responses Between Participants” in Section 4.2.3.A), there was little evid-

ence to suggest that participants’ age would influence their perspectives regarding message

effectiveness, and thus the findings, of the current study to evaluate message effectiveness.
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Figure 4.2.: Concept 1.

Figure 4.3.: Concept 2.

Figure 4.4.: Concept 3.

Figure 4.5.: Concept 4.
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Condition n Mage (SD) Gender (% females)

Message concept 1 111 50.79 (13.74) 68.5

Message concept 2 112 49.33 (14.16) 66.1

Message concept 3 107 51.00 (14.51) 67.3

Message concept 4 111 50.31 (13.75) 59.5

No message (control) 116 50.07 (13.83) 53.4

Table 4.2.: Number of participants in each condition.

4.3.2.C. Measures

The online survey consisted of five parts. All participants completed Part A: Demographics,

and Part B: indirect measures of message effectiveness prior to being shown a message. As

the terminology implies, indirect measures of effectiveness are those that relate to individuals’

attitudes and intentions, and which are assessed without direct reference to or necessity to

have viewed a message. In contrast, in Part C, the direct measures of message effectiveness,

only participants in the experimental condition completed this section. Once again, as the

terminology implies, direct measures of message effectiveness assess individuals’ responses

about messages directly and, thus, require a participant to have seen a message. Exper-

imental condition participants then continued on to complete Part D of the survey which

assessed the indirect measures of message effectiveness once again but this time, after they

had seen a message. Participants in the experimental condition thus responded to these

items both before viewing the message concept and again after they had viewed the image

with the intent being to explore any changes to responses following exposure to the message.

Participants in the control condition only responded to these items once. Finally, experimental

condition participants completed Part E of the survey which assessed participants’ preferred

message strategies. A copy of the study survey is presented in Appendix D.

PART A: Demographics

Part A included demographic items examining participants’ gender, age, state of residence,

postcode, type of driver licence, how long they have held their licence, and how many hours

they drive in an average week.

PART B: Indirect Measures of Message Effectiveness Prior to Seeing a Message

The indirect measures of message effectiveness comprised items examining participants’
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acceptance of messaging alerting them about an animal being on or near the road through

three constructs (attitudes, intentions, and willingness) examined across two key behaviours;

namely, slowing down and scanning the road environment. These two behaviours repres-

ented the behaviours that the messages were intended to encourage. Responses relating to

these two behaviours were also assessed across two contexts, when driving during the day

and when driving at night. The inclusion of both day and night contexts was to examine

whether there were any differences in the effectiveness of the messaging based on visibility

of the road context to which the messaging was alerting a motorist to.

Attitudes

Attitudes towards slowing down and scanning the road environment (during the day and

during the night) were measured using three semantic differential scales (i.e., “To what extent

would slowing down after seeing messaging about an animal being on or near the road

be. . . ” and “To what extent would scanning the road environment after seeing messaging

about an animal being on or near the road be. . . ”). Participants responded to items on 7-

point scales ranging from (1) Unsafe to (7) Safe, (1) Bad to (7) Good, and (1) Unwise to (7) Wise.

As displayed in Table 4.3, these items formed reliable scales for each behaviour (slowing

down/scanning) across both times of day (day/night) in the experimental and the control

conditions. Higher scores were associated with more favourable attitudes towards engaging

in the specified driving behaviour and thus the desired behaviour.

Condition Slowing Down Scanning

Day 𝛼 Night 𝛼 Day 𝛼 Night 𝛼

Experimental .90 .94 .93 .95

Control .87 .91 .94 .95

Table 4.3.: Reliability of attitude scales (pre-message exposure).

Intentions

Intentions to slow down and to scan the road environment if messaging about an animal

being on or near the road had been seen (during the day and during the night) were meas-

ured using four items (i.e., “I intend to slow down”, “It is likely that I would slow down”, “I

intend to scan the road environment” and “It is likely that I would scan the road environ-

ment”). Participants responded to items on a 7-point Likert scale ranging from (1) Strongly

disagree to (7) Strongly agree. These items formed reliable scales for each behaviour (slow-

ing down/scanning) across both times of day (day/night) in the experimental and control
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condition (see Table 4.4). Higher scores were associated with greater intentions to adopt the

specified driving behaviour.

Condition Slowing Down Scanning

Day 𝑟 Night 𝑟 Day 𝑟 Night 𝑟

Experimental .77* .87* .83* .89*

Control .85* .85* .77* .90*

*p < .001

Table 4.4.: Reliability of intention scales pre-message exposure.

Willingness

Willingness to slow down and to scan the road environment (during the day and during the

night) were measured using two separate items (i.e., “How willing would you be to slow down

after seeing messaging about there being an animal on or near the road?” and “How willing

would you be to scan the road environment after seeing messaging about there being an

animal on or near the road?”). Participants responded to the item on a 7-point scale ranging

from (1) Not willing at all to (7) Very willing. Higher scores reflected greater willingness to

perform each respective behaviour and thus indicative of greater willingness to perform the

desired behaviour.

Likelihood of stopping suddenly

Several participants from the focus groups in Study 1 expressed concerns that the messages

might encourage some drivers who are interested in seeing a cassowary to stop suddenly,

potentially creating a road hazard. To measure the likelihood that participants would react

in this way (while driving during the day and during night), a single item was included which

asked “If you were driving along a regional road in an area you were unfamiliar with and

saw messaging about there being an animal on or near the road, how likely do you think

you would be to just stop suddenly in an attempt to see the animal?” Participants responded

to the item on a 7-point Likert scale ranging from (1) Extremely unlikely to (7) Extremely likely.

Higher scores reflected a higher likelihood of stopping suddenly after viewing the message

and thus was indicative of the undesired response.
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PART C: Direct Measure of Message Effectiveness

Message Effectiveness

Message effectiveness was measured by asking participants to indicate how “convincing”

and “persuasive” they thought the message was (i.e., “How convincing do you think the mes-

sage was?”; “How persuasive do you think the message was?”) on two separate 7-point Likert

scales ranging from (1) Not at all convincing/persuasive to (7) Very convincing/persuasive.

These items formed a reliable scale (r (439) = .79, p < .001), with higher scores reflecting

greater message effectiveness.

Third-Person Effect

The third-person effect (TPE) is a perceptual phenomenon based on a judgement that

individuals tend to make regarding the perceived influence of a message on themselves

personally relative to others (or third persons) [200]. The TPE represents a key outcome

measure identified for evaluation of message effectiveness in accordance with the SatMDT [1].

The third-person differential perception score is calculated by subtracting perceived influence

of a message on oneself mean score from the perceived influence on others mean score.

When considering message influence, a reverse TPE is advantageous as it suggests that

individuals consider a message as likely to influence them more than others (see [198]).

The TPE was measured through asking participants in the experimental conditions to rate

the extent to which 1) themselves, 2) other motorists, and 3) other motorists of a similar age

and gender, would be influenced by the message (i.e., “How much would you yourself/other

motorists in general/other motorists of a similar age and gender to you, be influenced?).

Participants responded to items on 7-point Likert scales ranging from (1) Not at all influenced

to (7) Very influenced. Two third-person differential perception scores were created with

negative mean scores indicating more influence on self than others and positive mean scores

indicating more influence on others (i.e., other motorists in general, and other motorists of a

similar age and gender) than self.

Message Rejection

Message rejection was measured using five items (i.e., “If you were driving along and

saw this messaging, to what extent would you agree with the following statements?”), with

participants in the experimental conditions providing responses to five behaviours: 1) Assume

it was a general warning about animals in the area 2) Assume it was a real-time warning

about an animal being on or near the road at that time, 3) Stop suddenly in your lane to
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try and see the animal, and 4) simply ignore the messaging. Participants answered these

items through 7-point Likert scales ranging from (1) Strongly disagree to (7) Strongly agree,

with higher scores indicating stronger agreeance with the statement. Given that these items

reflected quite distinct measures, each item was analysed separately rather than combining

items to form a scale.

PART D: Indirect Measures of Message Effectiveness After Message Exposure

Part D comprised the same items as Part B and was presented only to participants in

the experimental condition (i.e., those who had been shown one of the four messages).

Specifically, the items measured constructs including participants’ attitudes towards slowing

down/scanning the environment after seeing the message, their intentions and willingness

to slow down/scan the environment after seeing the message. Like Part B, Part D asked

participants to respond to each item twice – once while imagining that they were driving

during the day, and again while imagining that they were driving at night. As reported in

Table 4.5, the items formed reliable scales for attitudes towards slowing down (day/night)

and scanning (day/night), and intention to slow down (day/night) and scan (day/night). As

previously noted, willingness to perform each driving behaviour and the likelihood of stopping

suddenly were measured using single items, thus it was not required to calculate reliability

scores for these measures.

Construct Number of Items Slowing Down Scanning

Day Night Day Night

Attitudes 3 𝛼 = .92 𝛼 = .96 𝛼 = .95 𝛼 = .97

Intention 2 𝑟 = .75∗ 𝑟 = .89∗ 𝑟 = .79∗ 𝑟 = .90∗

*p < .001

Table 4.5.: Reliability of attitude scales (Cronbach’s 𝛼) and intention scales (Pearson’s 𝑟) post-message exposure.

PART E: Preferred Driving Strategy for the Message

This section aimed to discern the specific wording that participants preferred for the driving

strategies offered in the message. Participants were asked to rate the extent to which they

perceived the following message strategies to be useful if that saw messaging indicating

that there was a cassowary ahead or near the road on a 7-point Likert scale ranging from

(1) strongly disagree to (7) strongly agree, along with a brief explanation of why they had

provided these scores (in an open-ended response):
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• Strategy 1: Slow down, look out.

• Strategy 2: Look out, slow down.

• Strategy 3: Reduce speed, be alert.

• Strategy 4: Be alert, reduce speed.

Additionally, participants were invited to provide other suggestions to improve the mes-

sages (with responses provided via free text).

4.3.2.D. Procedure

This study was approved by the QUT Human Research Ethics Committee (QUT approval num-

ber: 7663). The survey was hosted on the online survey platform, Qualtrics. Participants’

consent was obtained via a question presented following the study’s participant information

sheet. After completing Parts A and B of the survey, participants were then randomly alloc-

ated to one of five conditions, namely, to receive one of four VMS message concepts (i.e.,

experimental condition), or no message concept (i.e., control condition). If participants were

allocated to the control condition, they proceeded to the end of the survey. If allocated to

the experimental condition, participants were asked to view the presented message before

continuing onto Part C, D, and E, which assessed their responses to the message. Participation

in the survey took approximately 30 minutes.

4.3.3 Results

4.3.3.A. Sample Checks

Statistical checks were conducted to test whether there were any demographic differences

between the participants in each condition that may have potentially confounded statistical

comparisons. A chi-square test confirmed that there were no significant differences in the

gender mix between the five conditions, X2 (8,557) = 12.21, p = .142. A one-way analysis of

variance confirmed that there were no significant differences in participants’ age between the

five conditions, F(4, 550) = 0.24, p = .914. Based on these results, the groups were considered

demographically similar in their age and gender composition and thus any differences found

between groups may be more likely attributed to the messaging type (or message versus no

message condition).
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4.3.3.B. Direct Measures of Effectiveness

The direct measures of effectiveness were asked after participants had viewed one of four

message concepts. As noted previously, participants who were randomly allocated to the

control (no message) condition did not respond to these items.

Message Effectiveness

A one-way analysis of variance was performed to determine whether there were any dif-

ferences in the perceived effectiveness of the message concepts across the four experimental

message concept conditions. The results showed that there was no significant difference in

scores reported by participants, F(3, 437) = 1.91, p = .127, between message concept 1 (M =

5.79, SD = 1.15), message concept 2 (M = 6.05, SD = 1.02), message concept 3 (M = 5.84,

SD = 1.26), and message concept 4 (M = 5.84, SD = 1.18). These findings revealed that on

average, participants perceived all four message concepts to be effective (i.e., convincing

and persuasive given the scale anchors of the 7-point scale for each of the two items which

comprised the message effectiveness scale).

Third Person Effect

Table 4.6 displays the means and standard deviations of the third-person differential scores

for each of the four experimental message concept conditions. The findings show that parti-

cipants in all four message conditions considered the messages as being more influential on

themselves compared to other motorists in general (i.e., a reverse TPE). This result is encour-

aging given that any indication that a message is influencing oneself more relative to others

has been shown to be associated with greater attitudinal and intentional change (see [198]).

A one-way analysis of variance was performed to determine whether there were any

significant differences in the degree to which the participants perceived the message to be

more influential on themselves or other motorists in general across the four experimental

message conditions. The results revealed that there was no significant differences in third-

person differential scores reported by participants across the four experimental conditions,

F(3, 436) = 0.60, p = .617.

A second one-way analysis of variance was conducted to assess the perceived influence

of the message concept on self, compared to the perceived influence on other motorists of a

similar age and gender. Table 4.7 displays the means and standard deviations of the third-

person differential scores for each of the four experimental message concept conditions. Like

the previous findings, the results showed that participants in all four experimental conditions
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Condition n Third-person differential score

M (SD)

1. Message Concept 1 110 -1.18 (1.16)

2. Message Concept 2 112 -1.06 (1.19)

3. Message Concept 3 106 -1.06 (1.21)

4. Message Concept 4 111 -1.23 (1.22)

Note: Third-person scores are derived from subtracting the scores on

the perceived influence of a message on oneself item from perceived

influence of the message on others (i.e., third persons) item. Each of

these items was assessed on a 7-point scale with higher scores indicat-

ing greater influence. A negative mean third person differential score

indicates perceived greater influence on self relative to others.

Table 4.6.: Third-person effect (TPE) of perceived influence of message concepts on self vs. other motorists in

general.

considered the message to be more influential on themselves compared to on other mo-

torists of a similar age and gender. The results of the one-way analysis of variance also

revealed that there was no significant differences in third-person differential scores reported

by participants across the four experimental conditions, F(3, 436) = 0.21, p = .315, indicating

that all four message concepts had a similar level of perceived influence on participants, with

greater perceived influence on self relative to others.

Message Rejection

A series of one-way analyses of variance were performed to determine whether there

were any differences in the perceived likelihood that participants in each of the four message

concept conditions would 1) Assume it was a general warning about animals in the area, 2)

Assume it was a real-time warning about an animal being on or near the road at that time,

3) Stop suddenly in your lane to try and see the animal, 4) Slow down and move off to the

side of the road to try and see the animal, and 5) Simply ignore the messaging. The results

revealed that there were no significant differences in the perceived likelihood scores reported

by participants to assume it was a general warning about animals in the area, Welch’s F(3,

241.41) = 0.62, p = .601, assume it was a real-time warning about an animal being on/near

the road at that time, F(3, 437) = 0.74, p = .527, stop suddenly in your lane to try to see

the animal, Welch’s F(3, 240.14) = 1.71, p = .166, slow down and move off the side of the
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Condition n Third-person score

M (SD)

1. Message Concept 1 110 -0.34 (0.86)

2. Message Concept 2 112 -0.33 (1.07)

3. Message Concept 3 107 -0.36 (1.02)

4. Message Concept 4 111 -0.42 (0.98)

Note: Third-person scores are derived from subtracting the

scores on the perceived influence of a message on oneself

item from perceived influence of the message on others (i.e.,

third persons) item. Each of these items was assessed on a

7-point scale with higher scores indicating greater influence.

A negative mean third person differential score indicates per-

ceived greater influence on self relative to others.

Table 4.7.: TPE of perceived influence of message concepts on self vs. other motorists of a similar age and

gender.

road to try and see the animal, F(3, 436) = 0.75, p = .525, or simply ignore the messaging,

Welch’s F(3, 240.52) = 1.03, p = .378, across the four message concept conditions. The means

and standard deviations of the perceived likelihood of performing each behaviour scores are

reported in Table 4.8, and show that, on average, participants disagreed that they would stop

suddenly in their lane or slow down and move off to the side of the road in order to see

the animal (i.e., scored about 2 on the 7-point scale). However, the results also showed that

while, on average, participants somewhat agreed that they would assume that the signage

was a real-time warning about an animal being on/near the road, participants, on average,

were also neutral or somewhat agreed (i.e., scored 4 or 5 on the 7-point scale) that they

would assume the messaging was a general warning about animals being present in the

area. On average, participants disagreed that they would simply ignore the messaging (i.e.,

scored about 2 on the 7-point scale). These results suggest that rejection of the messages

was unlikely and, based on the mean scores, were more likely to assume it was a real-time

warning rather than a general warning and were unlikely to perform undesirable behaviours

such as stopping suddenly in attempts to see the cassowary (or animal) in response to the

messaging.

Next, a series of paired sample t-tests were conducted across each of the four experimental

conditions to determine whether there were any significant differences between the strength
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Message

Concept 1

Message

Concept 2

Message

Concept 3

Message

Concept 4

n M(SD) n M(SD) n M(SD) n M(SD)

Assume it was a general warning

about animals in the area

111 4.79

(1.88)

112 4.76

(1.96)

107 5.03

(1.87)

110 5.00

(1.59)

Assume it was a real-time warning

about an animal being on or near the

road at that time

111 5.50

(1.62)

112 5.70

(1.60)

107 5.39

(1.80)

111 5.42

(1.67)

Stop suddenly in your lane to try and

see the animal

111 1.98

(1.52)

112 1.88

(1.48)

107 2.38

(1.92)

110 2.14

(1.69)

Slow down and move off to the side

of the road to try and see the animal

111 2.70

(1.93)

112 2.48

(1.84)

106 2.87

(2.02)

110 2.73

(1.95)

Simply ignore the messaging 111 2.28

(1.70)

112 2.08

(1.52)

106 2.34

(1.79)

110 2.00

(1.53)

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement.

Table 4.8.: Perceived reactions to the message.

of participants’ assumptions that the message shown was a general warning about animals

in the area compared to their assumptions that the message shown was a real-time warning

about an animal being on or near the road. The results are displayed in Table 4.9 and reveal

a significant difference in assumption scores reported by participants who viewed message

concept 1 and message concept 2. These findings indicate that participants who viewed

message concept 1 and message concept 2 held stronger assumptions that the message

shown was a real-time warning rather than a general warning.

Condition 𝑀diff df t p

Message concept 1 -0.70 110 -2.75 .007

Message concept 2 -0.94 111 -3.71 < .001

Message concept 3 -0.36 106 -1.32 .189

Message concept 4 -0.41 109 -1.88 .063

Table 4.9.: Difference between assumptions that the message shown was a general warning versus a real-time

warning.
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4.3.3.C. Indirect Measure of Effectiveness

Attitudes

First, a series of four one-way analysis of variance were performed to determine whether

there were any differences in how favourably participants considered slowing down and

scanning the road environment (each during the day and during the night) after seeing mes-

saging in general (i.e., what came to participants’ minds when prompted to imagine roadside

messaging and not any of the four message concepts investigated in this study) indicating that

there was an animal on or near the road to be between each of the four message conditions

and the control condition. The results showed that there was no significant difference in mean

attitude scores reported by participants between the five conditions towards slowing down

during the day, F(4, 545) = 1.42, p = .227, slowing down during the night, Welch’s F(4, 271.21)

= 1.29, p = .275, scanning the environment during the day, F(4, 545) = 0.91, p = .461, and

scanning the environment during the night, F(4, 546) = 0.86, p = .490. The overall means

and standard deviations of participant’s reported (pre-message and post-message) attitude

scores are reported in Table 4.10. These findings highlight that on average, participants in all

five conditions considered both slowing down and scanning to be relatively safe, good, and

wise (i.e., provided scores of 5 or 6 on a 7-point Likert scale) driving behaviours to engage

in after seeing general messaging alerting them to the presence of an animal in the road

environment when driving during the day and during the night.

A second series of four one-way analysis of variance was conducted to investigate whether

there were any differences in how favourably participants in the experimental condition con-

sidered slowing down and scanning the road environment (each during the day and during

the night) after viewing their randomly allocated message concept, compared to participants

in the control condition who did not view a message. The results showed that there was

no significant difference in mean attitude scores reported by participants between the five

conditions towards slowing down during the day, F(4, 547) = 1.91, p = .108, slowing down

during the night, F(4, 549) = 0.58, p = .679, scanning the environment during the day, F(4,

548) = 0.22, p = .929, and scanning the environment during the night, F(4, 550) = 0.20, p =

.937. These findings indicate that there was no significant difference between how safe, good,

and wise participants in the experimental condition after viewing one of the four message

concepts considered slowing down and scanning to be compared participants in the control

condition who did not view a message. However, it should be noted that the post-message

attitude scores reported my participants in each of the four message concept groups were

consistently higher than the pre-message score reported by participants in control group

(see Table 4.10).
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Attitude Towards Slowing Down

Day Night

Pre-Message Post-Message Pre-Message Post-Message

Attitude Score Attitude Score Attitude Score Attitude Score

M(SD) M(SD) M(SD) M(SD)

Message concept 1 5.97 (1.14) 6.16 (1.12) 6.05 (1.22) 6.35 (1.14)

Message concept 2 6.08 (1.15) 6.30 (1.16) 6.20 (1.25) 6.31 (1.16)

Message concept 3 5.73 (1.37) 6.18 (1.22) 5.92 (1.46) 6.27 (1.34)

Message concept 4 6.03 (1.04) 6.25 (1.04) 6.28 (1.06) 6.33 (1.04)

No message (control) 5.92 (1.19) - 6.14 (1.18) -

Attitude Towards Scanning the Road Environment

Day Night

Pre-Message Post-Message Pre-Message Post-Message

Attitude Score Attitude Score Attitude Score Attitude Score

M(SD) M(SD) M(SD) M(SD)

Message concept 1 6.19 (1.24) 6.30 (1.10) 6.14 (1.20) 6.31 (1.16)

Message concept 2 6.33 (1.04) 6.41 (1.01) 6.26 (1.26) 6.34 (1.26)

Message concept 3 6.07 (1.47) 6.33 (1.28) 5.97 (1.56) 6.29 (1.37)

Message concept 4 6.32 (1.04) 6.32 (1.10) 6.24 (1.12) 6.24 (1.16)

No message (control) 6.29 (1.13) - 6.21 (1.32) -

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, more favourable attitudes towards slowing down or scanning the road environment.

Table 4.10.: Overall means and standard deviations of attitudes towards slowing down and scanning the road

environment before and after viewing message concept.

Next, a series of paired-sample t-tests were performed to determine whether there were

any differences in how favourably participants in each of the four experimental message

concept conditions considered slowing down (during the day and night) and scanning (during

the day and night) to be before viewing the message concept and after viewing the message

concept. As displayed in Table 4.11, the results show that for attitudes towards slowing down,

there was a significant difference in the mean scores reported by participants before and

after viewing message concept 1 during the day (p =.006) and night (p < .001), message
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concept 2 during the day (p = .025), message concept 3 during the day (p < .001) and

night (p < .001), and message concept 4 during the day (p = .027), whereby post-message

scores were higher than pre-message scores. Attitude scores were also higher post-message

compared to pre-message for message concept 2 and message concept 4 when driving at

night, however these differences were not statistically significant.

For attitudes towards scanning the road environment, and as presented in Table 4.11, the

results show that there was a significant difference between participants’ scores before and

after viewing the message in the message concept 3 condition during the day (p =.025) and

during the night (p =.002). No other significant differences were observed in the remaining

message concept conditions, however post-message scores were consistently higher than

pre-message scores across all groups, both during the day and night. Taken together, the

results suggest that participants who viewed message concept 3 held more favourable atti-

tudes towards both slowing down and scanning (regardless of the time of day) after viewing

the message. In addition, the results indicate a trend whereby participants in all conditions

reported significantly more favourably attitudes towards slowing down during the day after

viewing their allocated message. It is also noted that all mean scores were 6 and above on

the 7-point scale indicating that attitudes were, overall, relatively high towards engaging in

these behaviours. It is encouraging that a brief one-off exposure to the messaging was able

to increase positive attitudes in a number of instances, in a statistically significant manner

even when mean scores were already relatively high prior to viewing any of the messages.

Intentions

First, a series of four one-way analysis of variance was conducted to determine whether

there were any differences in participants’ intention to slow down and to scan the road

environment (each during the day and during the night) having seen messaging in general

(i.e., what came to participants’ minds when prompted to imagine roadside messaging and

not any of the four message concepts investigated in this study) indicating that there was

an animal nearby between each of the four message conditions and the control condition.

The overall means and standard deviations of participant’s reported intention scores (pre-

message and post-message) are reported in Table 4.12. The results showed that there was

no significant difference in mean scores reported by participants between the five conditions

regarding their intention to slow down during the day, F(4, 552) = 0.18, p = .947, slow down

during the night, F(4, 552) = 0.57, p = .686, scan the environment during the day, F(4, 552) =

0.65, p = .626, and scan the environment during the night, F(4, 551) = 0.78, p = .671. These

findings highlight that on average, participants agreed (i.e., provided scores of 5 or 6 on a

7-point Likert scale) that they intend to slow down, and agreed that they intend to scan the
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Attitude Towards Slowing Down

Day Night

Condition 𝑀diff df t 𝑀diff df t

Message Concept 1 -0.24 108 -2.78** -0.29 109 -3.46***

Message Concept 2 -0.22 111 -2.27* -0.11 111 -1.23

Message Concept 3 -0.45 103 -4.38*** -0.35 103 -3.77***

Message Concept 4 -0.23 109 -2.24* -0.05 110 -0.47

Attitude Towards Scanning the Road Environment

Day Night

Condition 𝑀diff df t 𝑀diff df t

Message Concept 1 -0.12 108 -1.15 -0.16 108 -1.72

Message Concept 2 -0.07 109 -0.84 -0.13 110 -1.28

Message Concept 3 -0.25 104 -2.27* -0.31 104 -3.14**

Message Concept 4 -0.02 108 -0.17 -0.10 110 -0.04

*p < .05, **p < .01, ***p < .001

Note: Mean difference scores based on cases being excluded pairwise.

Negative mean difference scores indicate that the pre-message score

was lower than the post-message score.

Table 4.11.: Difference in attitudes towards slowing down and scanning the road environment before and after

viewing message concepts.

environment prior to seeing any messaging.

A second series of four one-way analysis of variance was conducted to investigate whether

there were any differences in participants’ intention to slow down and scan the road envir-

onment (each during the day and during the night) between the experimental condition after

viewing their randomly allocated message concept and the control condition who did not

view a message. The results showed that there was no significant difference in mean in-

tentions scores reported by participants between the five conditions towards slowing down

during the day, Welch’s F(4, 275.05) = 1.14, p = .340, slowing down during the night, Welch’s

F(4, 274.86) = 1.88, p = .115, scanning the environment during the day, Welch’s F(4, 272.80)

= 1.11, p = .351, and scanning the environment during the night, Welch’s F(4, 273.56) = 1.35,

Section 4.3: Study 2 118



p = .250. These findings indicate that there was no significant difference in the degree to

which participants in the experimental intended to slow down and scan for the environment

(during the day and night) after viewing one of the four message concepts, compared to the

control condition who did not view a message.

Intention to Slow Down

Day Night

Condition Pre-Message Post-Message Pre-Message Post-Message

Intention Intention Intention Intention

Score Score Score Score

M(SD) M(SD) M(SD) M(SD)

Message concept 1 6.01 (1.20) 6.15 (1.03) 6.18 (1.06) 6.32 (0.92)

Message concept 2 5.94 (1.33) 6.14 (1.23) 6.19 (1.20) 6.05 (1.44)

Message concept 3 5.90 (1.48) 6.16 (1.20) 6.20 (1.25) 6.40 (0.99)

Message concept 4 5.89 (1.28) 6.20 (0.97) 6.31 (1.03) 6.30 (0.98)

No message (control) 5.88 (1.36) - 6.07 (1.28) -

Intention to Scan the Road Environment

Day Night

Condition Pre-Message Post-Message Pre-Message Post-Message

Intention Intention Intention Intention

Score Score Score Score

M(SD) M(SD) M(SD) M(SD)

Message concept 1 6.43 (0.95) 6.36 (0.94) 6.33 (1.00) 6.34 (1.02)

Message concept 2 6.40 (1.14) 6.29 (1.24) 6.36 (1.21) 6.23 (1.38)

Message concept 3 6.29 (1.24) 6.37 (1.05) 6.21 (1.31) 6.50 (1.04)

Message concept 4 6.29 (1.16) 6.23 (1.06) 6.30 (1.20) 6.24 (1.24)

No message (control) 6.47 (0.77) - 6.48 (0.93) -

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, stronger intentions of slowing down or scanning the road environment.

Table 4.12.: Overall means and standard deviations of intention to slow down and scan the road environment

before and after viewing message concepts.
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Next, a series of paired-sample t-tests were conducted to determine whether there were

any differences in participants’ reported intention to slow down (during the day and night)

and scan the road environment (during the day and night) in each of the four experimental

message concept conditions before and after viewing the message concept. The results, as

displayed in Table 4.13, show a significant difference between intention to slow down scores

for participants who viewed message concept 3 during the day (p =.015) and night (p < .013)

and message concept 4 during the (p =.011), whereby post-message scores were higher than

pre-message scores. Although not statistically significant, it should be noted that intention

scores decreased or remained stable after viewing the message for message concept 2 (night

only) and message concept 4 (night only).

For intentions to scan the road environment, and as displayed in Table 4.13, the results

show that there was a significant difference between scores for participants who viewed

message condition 3 when driving at night, who reported higher post-message scores com-

pared to their pre-message scores (p =.008). No other significant differences were observed

in the remaining message concept conditions. However, similar to the findings regarding

intentions to slow down, participants intent to scan was also found to decrease (although not

to a statistically significant extent) after viewing the message for message concept 1 (day),

message concept 2 (day and night), and message concept 4 (day and night). Overall, the

findings suggest message concept 3 had the strongest impact on participants intentions to

slow down (during the day and night) and scan the environment (during the night). In addi-

tion, the findings also indicate a trend whereby intentions to scan the environment tended to

decrease after viewing the message more often (i.e., for message concepts 1, 2, and 4 dur-

ing the day, and message concepts 2 and 4 during the night) than intentions to slow down,

which only decreased (message concept 2) or remained constant (message concept 4) when

driving at night. However, it should be noted that mean scores remained high post-message

across all groups for each driving behaviour (i.e., mean scores were 6 and above on the 7-

point scale), indicating that participants still held relatively high intentions to engage in these

positive behaviours regardless of the observed decreases in scores.

Willingness

First, a series of four one-way analysis of variance was performed to determine if there

were any differences in participants’ reported willingness to slow down and to scan the

environment (during the day and during the night) having seen messaging in general (i.e.,

what came to participants’ minds when prompted to imagine roadside messaging and not

any of the four message concepts investigated in this study) indicating that there was an

animal on or near the road between each of the four experimental message conditions
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Intention to Slow Down

Day Night

𝑀diff df t 𝑀diff df t

Message Concept 1 -0.14 110 -1.36 -0.14 110 -1.44

Message Concept 2 -0.20 111 -1.48 0.13 111 1.21

Message Concept 3 -0.26 106 -2.48* -0.21 106 -2.24*

Message Concept 4 -0.32 110 -2.57* 0.00 110 0.05

Intention to Scan the Road Environment

Day Night

𝑀diff df t 𝑀diff df t

Message Concept 1 0.06 110 0.92 -0.01 110 -0.11

Message Concept 2 0.11 111 0.82 0.13 111 1.44

Message Concept 3 -0.08 106 -0.71 -0.24 105 -2.71**

Intention to Scan the Road Environment

Day Night

Condition 𝑀diff df t 𝑀diff df t

Message Concept 4 0.06 110 0.58 0.05 110 0.71

*p < .05, **p < .01, ***p < .001

Table 4.13.: Difference in intention to slow down and scan the road environment before and after viewing

message concepts.

and control condition. The results showed that there was no significant difference in mean

scores between the four message concept conditions regarding participants’ willingness to

slow down during the day, F(4, 549) = 0.88, p = .478, scan the environment during the day,

F(4, 550) = 0.79, p = .529, or scan the environment during the night, F(4, 549) = 0.92, p

= .454. However, the results also revealed a significant main effect in the scores regarding

participants’ willingness to slow down during the night, Welch’s F(4, 270.10) = 3.34, p = .011.

Post-hoc comparisons showed that there was a significant difference between scores in the

message concept 3 condition and the message concept 4 condition (Mdiff = -0.40, p = .024),

indicating that participants in message condition 3 reporter greater willingness to slow down

during the night after seeing general messaging alerting them to the presence of nearby
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animals compared to participants in message condition 4. No significant differences were

observed between any other condition pairs.

A second series of four one-way analysis of variance was conducted to investigate whether

there were any differences in participants’ willingness to slow down and scan the road en-

vironment (each during the day and during the night) between the experimental condition

after viewing their randomly allocated message concept and the control condition who did

not view a message. The results showed that there was no significant difference in mean

willingness scores reported by participants between the five conditions towards slowing down

during the day, F(4, 551) = 1.36, p = .256, slowing down during the night, F(4, 550) = 1.25, p

= .288, scanning the environment during the day, F(4, 551) = 0.40, p = .808, and scanning

the environment during the night, F(4, 549) = 0.47, p = .755. These findings indicate that

there was no significant difference in the degree to which participants reported they would

be willing to slow down and scan for the environment (during the day and night) after viewing

one of the four message concepts, compared to the control condition who did not view a

message. However, it should be noted that the post-message willingness to slow down scores

reported my participants were consistently higher than the pre-message score reported by

participants in control group, and most post-message willingness to scan scores were higher

than those reported by participant in the control group. The overall means and standard

deviations of participant’s reported pre-message and post-message willingness scores are

reported in Table 4.14.

Next, a series of paired-sample t-tests were performed to determine whether there were

any differences in participants’ reported willingness to slow down (during the day and night)

and scan the road environment (during the day and night) in each of the four experimental

message concept conditions before and after viewing the message concept. The results

showed that there was a significant difference in the mean willingness to slow down during

the night and scan the environment during the night reported by participants who viewed

message concept 3 (p =.003), whereby post-message scores were higher than pre-message

scores. However, like the results for intentions, participants who viewed message concept 2

and message concept 4 reported lower post-message scores for willingness to slow down

during the day (message concept 2 only) and night (message concept 2 and 4). Although

these differences did not reach statistical significance.

For willingness to scan the road environment, and as presented in Table 4.15, the results

showed that participants who viewed message concept 3 reported significantly higher post-

message scores compared to pre-message scores when driving at night (p = .024). However,

the results showed that post-message willingness to scan scores were lower than pre-message

Section 4.3: Study 2 122



Willingness to Slow Down

Day Night

Pre-Message Post-Message Pre-Message Post-Message

Willingness Willingness Willingness Willingness

Score Score Score Score

M(SD) M(SD) M(SD) M(SD)

Message concept 1 6.25 (1.08) 6.36 (0.95) 6.38 (0.95) 6.41 (0.85)

Message concept 2 6.34 (0.91) 6.24 (1.13) 6.40 (1.03) 6.29 (1.11)

Message concept 3 6.20 (1.26) 6.30 (1.13) 6.20 (1.19) 6.46 (1.05)

Message concept 4 6.28 (0.99) 6.37 (0.91) 6.59 (0.67) 6.52 (0.86)

No message (control) 6.09 (1.20) - 6.27 (1.18) -

Willingness to Scan the Road Environment

Day Night

Pre-Message Post-Message Pre-Message Post-Message

Willingness Willingness Willingness Willingness

Score Score Score Score

M(SD) M(SD) M(SD) M(SD)

Message concept 1 6.60 (0.80) 6.52 (0.75) 6.49 (0.88) 6.47 (0.86)

Message concept 2 6.61 (0.90) 6.40 (1.14) 6.50 (1.05) 6.32 (1.22)

Message concept 3 6.67 (1.06) 6.53 (0.96) 6.58 (1.23) 6.47 (1.08)

Message concept 4 6.50 (0.86) 6.44 (0.97) 6.58 (0.99) 6.50 (0.99)

No message (control) 6.44 (0.83) - 6.43 (1.15) -

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, greater willingness to slow down or scan the road environment.

Table 4.14.: Overall means and standard deviations of willingness to slow down and scan the road environment

before and after viewing message concepts.

scores for participants who viewed message concept 1, message concept 2, and message

concept 4 (day and night), and message concept 3 (day only). Of these results, the difference

between scores was only significant for message concept 2 when driving during the day (p

=.027). Overall, the findings suggest that participants who view message concept 3 reported
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significantly greater willingness to both slow down and scan the road environment but only at

night. In addition, the findings also indicate a similar trend as observed for intentions, whereby

participants reported lower willingness to scan scores after viewing the message across all

groups when driving both during the day and night (except for message concept 3 at night as

previously noted). Moreover, and like the results reported for intentions, only participants who

viewed message concept 2 and message concept 4 reported lower willingness to slow down

after seeing the message. Again, although some willingness scores were seen to decrease

after viewing the message, the post-message scores remained high (i.e., mean scores were

6 and above on the 7-point scale). This finding suggests that participants were willing to

both slow down and scan the road environment (during the day and night) regardless of the

observed decreases in scores.

Willingness to Slow Down

Day Night

𝑀diff df t 𝑀diff df t

Message Concept 1 -0.11 109 -1.17 -0.12 108 -0.26

Message Concept 2 0.21 110 1.01 0.11 111 1.01

Message Concept 3 -0.10 106 -1.24 -0.27 105 -3.09**

Message Concept 4 -0.09 110 -1.04 0.07 110 0.92

Willingness to Scan the Road Environment

Day Night

𝑀diff df t 𝑀diff df t

Message Concept 1 0.08 109 1.26 0.12 109 0.33

Message Concept 2 0.21 111 2.24* 0.13 111 1.42

Message Concept 3 0.07 106 -1.02 -0.16 105 -2.30*

Message Concept 4 0.06 110 0.91 0.07 110 1.27

*p < .05, **p < .01, ***p < .001

Note: Mean difference scores based on cases being excluded pairwise.

Negative mean difference scores indicate that the pre-message score

was lower than the post-message score.

Table 4.15.: Difference in willingness to slow down and scan the road environment before and after viewing

message concepts.
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Likelihood of Stopping Suddenly

First, two one-way analysis of variance were performed to determine if there were any

differences in participants’ reported likelihood that they would stop suddenly in their lane in

an attempt to see the animal after seeing messaging (in general) indicating that there was an

animal nearby (when driving during the day and during the night) between each of the four

experimental message conditions and the control condition. The results of the first one-way

analysis of variance showed that there no significant difference in mean scores between the

five conditions regarding participants’ likelihood of stopping suddenly during the day, F(4,

552) = 1.04, p = .366. The results of the second one-way analysis of variance showed that

there was a significant main effect in the scores regarding participants’ likelihood of stopping

suddenly during the night, Welch’s F(4, 275.06) = 2.61, p = .036. Post-hoc comparisons

revealed that there was no significant difference in mean scores between any of the condition

pairs; however, mean difference scores did approach statistical significance for the message

concept 2 and message concept 3 condition comparison (Mdiff = -0.83, p = .054) and

the message concept 2 and message concept 4 condition comparison (Mdiff = -0.78, p

= .056). These results suggest that participants who viewed message concept 2 may be

less likely to stop suddenly compared to participants who viewed message concept 3 and

message concept 4, albeit not significantly so. Overall, the findings suggest that, on average,

participants were unlikely to stop suddenly to try to see the animal after seeing messaging

alerting them to the presence of a nearby animal, both when driving during the day and

during the night.

An additional two one-way analysis of variance were conducted to investigate whether

there were any differences in the reported likelihood that they would stop suddenly in their

lane to attempt to see the animal Between participants in the experimental condition after

viewing their randomly allocated message concept and the control condition who did not

view a message. The results of the first one-way analysis of variance showed that there as a

significant main effect regarding participants’ likelihood of stopping suddenly during the day,

Welch’s F(4, 273.81) = 2.71, p = .031. However, post-hoc comparisons revealed that there was

no significant difference in mean scores between any of the condition pairs. The results of

the second one-way analysis of variance showed that there was also a significant main effect

in the scores regarding participants’ likelihood of stopping suddenly during the night, Welch’s

F(4, 274.57) = 4.63, p = .001. Post-hoc comparisons revealed that there was a significant

difference between message concept 2 condition and message concept 3 condition (Mdiff =

-0.99, p = .005), and message concept 2 condition and the control condition (Mdiff = -0.95,

p = .003). These findings indicate that participants who viewed message concept 2 may

be less likely to stop suddenly to try and seen the animal when driving at night compared
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to participants who viewed message concept 3 or participants who were not exposed to

a specific message concept. The overall means and standard deviations of participant’s

reported pre-message and post-message likelihood of stopping suddenly scores are reported

in Table 4.16.

Likelihood of Stopping Suddenly

Day Night

Pre-Message Post-Message Pre-Message Post-Message

Stop Suddenly Stop Suddenly Stop Suddenly Stop Suddenly

Score Score Score Score

M(SD) M(SD) M(SD) M(SD)

Message concept 1 2.81 (2.02) 2.47 (2.11) 2.96 (2.20) 2.56 (2.19)

Message concept 2 2.54 (1.85) 2.18 (1.56) 2.55 (2.02) 2.05 (1.75)

Message concept 3 3.07 (2.22) 2.89 (2.25) 3.38 (2.46) 3.05 (2.40)

Message concept 4 2.96 (2.06) 2.68 (2.11) 3.33 (2.27) 2.62 (2.06)

No message (control) 2.78 (2.05) - 3.00 (2.15) -

Note: items were measured on 7-point Likert scales with higher scores indicating greater likelihood to

stop suddenly and, thus, more positive results from a safety perspective are for lower mean scores.

Table 4.16.: Overall means and standard deviations of likelihood of stopping suddenly to see the animal before

and after viewing message concepts.

Next, a series of paired-sample t-tests were performed to determine whether there were

any differences in participants’ reported likelihood of stopping suddenly (during the day

and night) in each of the four experimental message concept conditions before and after

viewing the message concept. As presented in Table 4.17, the results showed that there was

a significant difference in the mean likelihood of stopping suddenly (during the day) scores

reported by participants who viewed message concept 1 (p = .034) and message concept 2

(p = .009). The results also showed that there was a significant difference in mean likelihood

of stopping suddenly (during the night reported by participants who viewed message concept

1 (p = .009), message concept 2 (p = .003), and message concept 4 (p < .001). No significant

differences were observed for message concept 3 (either during the day nor night). Overall,

the findings suggested that participants who were presented with message concept 1 or

message concept 2 reported that they would be less likely to stop suddenly to try and see

the animal after viewing the message (both when driving during the day and during the

night) than prior to viewing each of these respective messages, and participants who were
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presented with message concept 4 reported being less likely to stop suddenly after viewing

the message when driving at night only relative to before seeing the message. Participants

who viewed message concept 3 reported no change in the likelihood that they would stop

suddenly after viewing the VMS message, regardless of the time of day. Thus, overall, mean

scores were, on average, low, suggesting that participants were unlikely to engage in this

behaviour; however, encouragingly, in the case of messages 1, 2 and 4, participants were

significantly less likely to report intention to stop after seeing these messages than prior to.

Likelihood of Stopping Suddenly

Day Night

𝑀diff df t 𝑀diff df t

Message Concept 1 0.34 110 2.15* 0.40 110 2.67**

Message Concept 2 0.37 111 2.89** 0.50 111 3.02**

Message Concept 3 0.18 106 0.98 0.34 106 1.92

Message Concept 4 0.28 110 1.63 0.71 110 4.07***

*p < .05, **p < .01, ***p < .001

Note: Mean difference scores based on cases being excluded pairwise.

Negative mean difference scores indicate that the pre-message score

was lower than the post-message score.

Table 4.17.: Difference in likelihood of stopping suddenly to see the animal before and after viewing message

concepts.

4.3.3.D. Driving Strategies for the Message

Participants allocated to one of the message concept conditions were asked to rate the extent

to which they agreed that the message had provided the following four driving strategies

– 1) Slow down, look out, 2) Look out, slow down, 3) Reduce speed, be alert, and 4) Be

alert, reduce speed, would be useful if they were to see a message about a cassowary

having been detected ahead or near the road. Participants provided their responses on a

7-point Likert scale from 1 (strongly disagree) to 7 (strongly agree). The means and standard

deviations of the perceived usefulness of each driving strategy are reported in Table 4.18,

and indicate that, on average, participants agreed that all four strategies would be useful to

have seen in a message about a cassowary being on or near the road. However, perceived

usefulness scores were slightly higher for ‘slow down, look out’ and ‘reduce speed, be alert’,

Section 4.3: Study 2 127



suggesting that participants preferred strategies which encouraged drivers to first reduce their

driving speed before scanning the road environment. A one-way analysis of variance was

then performed to determine whether there were any significant differences in participants’

perceived usefulness of each driving strategy between each of the four message concept

conditions. The results showed that there was no significant difference in perceived usefulness

scores for ‘slow down, look out’ F(3, 437) = 0.80, p = .497, ‘look out, slow down’, F(3, 436)

= 1.54, p = .203, ‘reduce speed, be alert’, F(3, 437) = 1.30, p = .275, and ‘be alert, reduce

speed’, Welch’s F(3, 241.33) = 1.48, p = .220 across the four message concept conditions.

Driving Strategy Experimental Message Message Message Message

Condition Concept 1 Concept 2 Concept 3 Concept 4

M (SD) M (SD) M (SD) M (SD) M (SD)

Slow down, look out 6.06 (1.31) 6.13 (1.18) 6.02 (1.38) 6.18 (1.20) 5.93 (1.45)

Look out, slow down 5.69 (1.45) 5.45 (1.55) 5.68 (1.47) 5.83 (1.34) 5.79 (1.43)

Reduce speed, be alert 6.09 (1.20) 6.04 (1.31) 5.98 (1.27) 6.07 (1.20) 6.28 (1.01)

Be alert, reduce speed 5.76 (1.45) 5.51 (1.61) 5.89 (1.34) 5.75 (1.46) 5.87 (1.37)

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, more favourable views of a strategy.

Table 4.18.: Perceived usefulness of driving strategies.

Reasoning for Preferred Driving Strategies

Participants were also asked to briefly explain why they provided the scores that they did

for the four driving strategies. A total of 433 participants responded to this question. Nearly

half of participants in the experimental condition (n = 197, 44.7%) provided responses that

indicated that they held no preference for a particular strategy, reported that they agreed

(n = 60, 13.6%) or strongly agreed (n = 137, 31.1%) that all four driving strategies would

be useful having seen messaging about the presence of an animal near or on the road.

The most cited reasons participants reported for having no preference for specific strategies

was that they would change their behaviour accordingly regardless of the wording out of 1)

concern for the welfare of the animal, their vehicle and its occupants, and other road users, 2)

a desire to be compliant with road safety messaging, and 3) because it is “common sense”.

Only a small number of participants reported disagreeing (n = 1) or strongly disagreeing (n =

2) that the four driving strategies were useful, citing that the strategies were “vague” and that

there was a risk that “people could slow down to dangerous speeds” which could potentially

create additional road hazards.
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“I think any warning on a regional road to slow down and scan the environment is sensible

and should be taken seriously.” (Female, 45)

“If there is a warning, you should do all those things - be alert, look out, slow down, reduce

speed.” (Male, 66)

“I would be extremely worried about hitting a cassowary due to its size, so if warning had

been giving about one, regardless of the wording of the sign, I would be slowing down

anyway.” (Female, 32)

“I am a cautious driver, I always drive carefully and will slow down if requested.” (Female,

54 years)

Of the participants who expressed a preference regarding the four driving strategies, a total

of 68 (15.7%) reported that they would consider the strategy more useful if the driving slower

aspect was presented first. The most cited reasons for this preference were that slowing down

is the most “important” and “immediate” of the two actions for driving safely in the specific

situation, it is safe to scan the environment when driving slower, and that drivers should

already be maintaining alertness while driving “regardless of warnings”. A smaller number

of participants (n = 11, 2.5%) reported a preference for presenting the environment scanning

aspect first, citing that “people don’t want to necessarily slow down” and as “animal may or

may not be there, [it is] best to look and see first before reacting”.

“I Put the most important action first. If I see a sign for only a few seconds, I shouldn’t have

to think about what you want me to do. The easiest action with the best outcome is to

reduce speed. In case of any impact, it is more survivable for me, the animal, and the car.

look out could have [drivers] looking for the animal and not the road.” (Female, 40)

“I think the speed first is more important risk mitigation factor and makes sense to me as a

driver.” (Male, 29)

“Looking out without slowing down can be very dangerous, as would being alert but not

slowing down would reduce the time to react if the animal was to jump on the road.” (Male,

60)

“The action you would like everyone to take comes first: reduce speed, be alert are the two

specific things you want drivers to do and in that order.” (Female, 51)
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When considering the four driving strategies as two sets (i.e., ‘slow down, look out’ and

‘look out, slow down’ as one set, and ‘reduce speed, be alert’ and ‘be alert, reduce speed’ as

the second set), a similar number of participants reported a preference for each. Based on

the explanations offered for the scores provided in the previous items, 32 participants (7.4%)

reported a preference for the ‘slow down, look out’ set, and 35 participants (8.0%) reported

a preference for the ‘reduce speed, be alert’ set. Participants who preferred the ‘slow down,

look out’ set reported that these terms were “simpler”, had a “stronger impact” and were

“easier to understand”, and considered the ‘reduce speed, be alert’ set to be too “generic”.

Participants who preferred the ‘reduce speed, be alert’ set reported that these terms were

more “compelling”, “persuasive” and would “make more of an impact on the driver”, and

expressed concerns that the ‘slow down, look out’ may be too “alarming” for drivers. How-

ever, participants (across both preferences) also often reported that their preferred set was

“clearer” and better indicated the presence of “an immediate threat” compared to their least

preferred set and suggest that preferences regarding specific wording of the message may

be due to individual differences rather than reflecting what would be considered a more

effective strategy for drivers more broadly.

Participant Suggestions to Improve Driving Strategies

In addition to providing an explanation for the scores they gave to each of the four driving

strategies, participants were also invited to suggest ways the strategies could be improved.

A total of 204 participants responded to this question. Five themes were identified from

participants’ suggestions – (1) alternative wording for the presented strategies, (2) including a

reference (text or image) to the specific animal, (3) the need to ensure drivers are aware of

the real-time nature of the message, and (4) suggestions relating to design and placement

of the signage. These five themes are discussed below.

Alternative Wording of Strategies

A total of 44 participants offered new driving strategies for the message or suggested ways

to improve the provided strategies. Common suggestions included amending the supplied

message taglines to include using the ‘slow down’ strategy only (n = 16), the ‘scan the en-

vironment’ strategy only (n = 8), and including words that denote urgency such as warning,

caution, or danger (n = 6). In addition to these specific suggestions, a further 6 participants

emphasised that the messages need to be “spelt out clearly using simple and few words”.

The full list of the driving strategy suggestions offered by participants is presented in Table

4.19.

In addition to these alternative wordings to the presented strategies, a further 15 participants
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Driving Strategy Suggestions

• Prepare to stop

• Animals roaming, reduce speed

• Be alert, stay responsible

• Big bird ahead, slow down

• Slow down, look out, be safe

• Drive to the conditions

• ANIMALS MAY BE PRESENT AHEAD SO

SLOW DOWN

• Slow down, animals about

• Slow down, stay alert

• Slow down, look out, save lives

• Be wary of cassowary

• Be careful

• Danger. Possible animal on or near

road. Reduce speed NOW

• SLOW DOWN AND BE CAUTIOUS

• To prevent a potential damaging/serious

collision with wildlife, please slow down

and stay alert

• Only scan area if safe to do so

• Slow down/reduce speed, wildlife ahead

• SLOW DOWN𝑎

• Be safe

• Slow down, large wildlife ahead

• BEWARE OF WILDLIFE ON ROAD

• Be alert

• WATCH OUT, PREPARE TO REDUCE

SPEED, CAUTION WILDLIFE

• Cassowary spotted. Slow down.

• Slow down. Use caution. Wildlife haz-

ard.

• Animals in area, be alert

• Be alert, animals!

• Animal seen in last 24 hours, be alert

•Watch out — animals on the road ahead

• ANIMAL AHEAD, SLOW DOWN

• ANIMAL AHEAD, BE ALERT

• Drive in the speed limit

• Include ‘detected ahead’

• Include the word ‘habitat’

• Words like warning, caution𝑏 , or danger

𝑎𝑛 = 3. 𝑏𝑛 = 2.

Table 4.19.: Driving strategy suggestions offered by participants.

suggested the driving strategies could be improved by including more detailed instructions

for drivers. Specifically, six participants suggested that it would be useful to include a specific

speed limit in the message for drivers to adhere to, and nine participants suggested that it

would be useful to include the number of kilometres that the detection zone (i.e., the area in

which the driver can expect to potentially encounter the animal) extends for.
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“Potentially changing the speed limits for the areas and have it written on the signs.

Humans seem to cope better with clear instructions and when there’s limits such as

numbers to follow it may make people slow down more effectively.” (Female, 31)

“Animal on the road within the next [x] km’. Be hand to know the know distance [the]

animal was sighted on [the] road so as to resume normal speed.” (Male, 58)

Reference to the Specific Animal

A total of 35 participants offered suggestions relating to whether they considered it im-

portant to reference the specific animal that has been detected within the message. Of this

subsample, 28 participants reported that including name of the animal (n = 13) or an image

of the animal (n = 15) in the message would be beneficial to help drivers understand what

to expect. Conversely, seven participants suggested that the type of animal should not be

identified, primarily due to concerns that drivers may become distracted while trying to spot

an animal they are interested to see. In addition, a small number of participants also noted

that the size of the animal is more important than the type of animal, and that the word

‘cassowary’ was difficult to read quickly.

“An image [of] the animal or clear messaging ‘large animal on road ahead’ or ‘large

animal near the road ahead’, if you just say ‘animal’ that could mean a lizard which would

not necessarily make me choose to slow down.” (Female, 42)

“I personally like the identification of the exact animal in the area. I think it provides more

authentication of the message and would influence me and hopefully other drivers to the

urgency and validity of the signing.” (Female, 73)

“I don’t think identifying the type of animal is useful, and I’m concerned that some people

might stop unnecessarily.” (Male, 67)

Emphasising Real-Time Nature of Message

A total of 24 participants offered suggestions that revolved around emphasising the need

for drivers to understand that the messages were real-time alerts about the presence of an-

imal that poses a potential road hazard, rather than a general warning that animals inhabit

the area. To help drivers understand the immediacy of the message, common suggestions

offered by participants included using “direct” wording (e.g., “cassowary detected”) to “con-
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vey a sense of emergency” (n = 3) and display additional real-time data on the signage such

as the time frame the animal was detected within (n = 7), the chance (%) of encountering

the animal (n = 1), rating the level of danger ahead (n = 1), the current date (n = 1), and

the approximate distance the animal is from the road (n = 3). Additionally, a further eight

participants specifically expressed concerns that drivers may ignore the messaging if they

assume that the signage is a permanent fixture offering a general warning about animals

in the animal or become complacent if they do not encounter any animals after seeing the

message “like ‘roadwork ahead’ [signs] and there’s no roadwork”.

“Any messaging about animals on the road needs to be real time and not just a general

warming message and in order to do this you also need to influence drivers and tell them

that you now have real-time messaging.” (Male, 44)

“Needs to be legit; if they are put in the sign the animals need to be around. If you put

them in places where there [are] minimal animals eventually people will ignore the signs

and speed through the area, and not care or believe the signs.” (Female, 46)

Signage Design and Placement

A total of 47 participants offered suggestions that related to the visual design of the signage

and factors related to the placement of the signage. The most common suggestions offered

were to include flashing lights (n = 23) to attract attention, use bright colours (e.g., red to

indicate that the message is a warning) (n = 6), and ensure drivers are able to read and enact

the strategies offered in the message (i.e., slowing down and scanning the road environment)

by placing the signs at an appropriate distance from the detection zone (n = 2) or placing

multiple signs along the detection zone (n = 2).

“Flashing lights or signs are more likely to be noticed.” (Female, 72)

“Colourful flashing lights will do the trick.” (Female, 26)

“Give enough notice to avoid sudden stops or surprises” (Male, 39)
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4.3.4 Summary on Study 2

Study 2 represented the final study in a mixed program of research that involved the devise

and evaluation of messaging seeking to inform passing motorists that an animal had been

detected on or near the road ahead and to encourage them to engage in two key desired

behaviours – (1) slow down, and (2) scan the road environment. Study 2 sought to evaluate

the relative effectiveness of four message concepts and when compared with a control group

of participants who were not shown any messaging. The main findings emerging from Study

2 are as follows:

• Participants reported average scores of 5 and 6 (on a 7-point scale) for attitudes, in-

tentions, and willingness to slow down and scan the road environment, and average

scores of 2 and 3 (on a 7-point scale) regarding the likelihood of that they would stop

suddenly in an effort to see the animal, both before and after viewing the message.

These findings suggest that the current sample of participants inherently appreciate

the importance of messaging designed to warn motorists of the presence of nearby

animals.

• Overall, the sample was large and the distribution of participants within each of the five

conditions was relatively even. However, it is acknowledged that the sample comprised

a high proportion of older participants. Given that the results of Study 2 reflected similar

findings to those found in Study 1 (where age was not seen to influence the results),

the older age of the cohort in the present study was not considered to be the factor

underpinning participants’ responses.

• The findings from the direct measures of effectiveness and the indirect measures of

effectiveness indicated that participants in the current sample would respond as inten-

ded to any of the four message concepts presented in Study 2. This is evidenced by

the following:

– Regarding the direct measures of effectiveness of the message concepts, the over-

all results revealed that there were no substantial differences between the con-

cepts. The mean scores showed that participants perceived the four message

concepts to be effective (i.e., convincing and persuasive). The mean scores of the

message rejection items also showed that participants disagreed that they would

stop suddenly in their lane to try and see the animal, slow down and move off to

the side of the road to try and see the animal, or simply ignore the messaging

if they saw the message while driving. These findings indicate that participants
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reported more acceptance rather than rejection of the four message concepts.

– In terms of perceived influence of the message on self versus others, the results

showed that were was no significant difference between the message concepts.

The third-person differential scores showed that participants perceived that the

message would have greater influence on themselves compared to other motor-

ists (consistently found reverse TPEs).

– Regarding the indirect measures of effectiveness, and as previously mentioned,

participants in all message concept groups consistently reported relatively high

scores for attitudes, intentions, and willingness to slow down and scan as de-

sired before and after viewing the message. Despite reporting high pre-message

scores, improvements in attitudes were still observed for all four message con-

cepts and were significantly higher at post than pre for message concept 3 (both

behaviours, day and night). Similarly, participants in all message concept groups

reported consistently lower scores (as intended) regarding the likelihood that they

would stop suddenly in their lane in an attempt to the see the animal after view-

ing their allocated message. These findings indicate that participants held more

favourable attitudes towards these two positive driving behaviours and indicated

less intention to stop suddenly following a single, brief exposure to the message.

• Although participants from some groups reported lower post-message scores on in-

tentions and willingness to perform each driving behaviour at certain times of the day,

it is important to recognise that the post-message scores across all groups remained

high for both measure (i.e., 6 or above on a 7-point scale), and only one of these

decreases was statistically significant. It is unclear what prompted these decreases in

scores; however, the finding indicates that participants reporting that they were still

willing to and intended to slow down and scan the environment after viewing their

allocated message. However, although the overall results support the effectiveness of

all four message concepts, the subtleties afforded by the SatMDT framework [1] show

that each message differed in strength across the direct and indirect measures. The

intricacies are discussed in the following points:

– Regarding the direct measures of effectiveness, all four message concepts were

seen to be equally effective and participants from all four groups perceived their

allocated message would be more influential on themselves as opposed to other

motorists (as desired). However, when comparing whether participants considered

the message to be a real-time warning or a general warning about animals in the
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area, those who viewed message concept 1 and message concept 2 reported sig-

nificantly higher real-time warning scores compared to general warning scores.

It is noted that these two concepts also feature the same text (i.e., ‘cassowary

detected’ and ‘slow down, look out’). This finding indicates that participants who

viewed message concepts 1 and 2 held stronger assumptions that the message

was a real-time warning, which may be due to the language used in these mes-

sages. This finding is important given the intent of the system displaying these

messages to be one indeed offering real-time warnings to motorists.

– In terms of attitudes, post-message scores were higher (as intended) for all mes-

sage concepts for slowing down and scanning, both during the day and night.

Message concept 3 was the only message that received significantly higher post-

message scores for both behaviours when driving during the day and night. How-

ever, significant differences were also observed for message concept 1 (slowing

down, day and night), and message concepts 2 and 4 (slowing down, day only).

These findings suggest that message concepts 1, 2, and 4 may elicit different

(though still positive) attitudinal responses depending on the driving behaviour

and time of day, and message concept 3 may offer relatively consistent increases

in attitude regardless of the behaviour or time of day.

– Regarding participants likelihood of stopping suddenly to see the animal, post-

message scores were lower (as intended) for all four message groups. However,

significant decreases in scores were observed for message concepts 1 and 2 (day

and night), and message concept 4 (night only). This finding suggests that, like

the results related to real-time versus general warning, participants who viewed

message concept 1 and message concept 2 indicated less intent to stop suddenly

which may be due to the language used in these messages. It also noticed that

message concept 4, like 1 and 2, also specifies the type of animal that has been

detected. This suggests that participants may be less inclined to stop suddenly

because they are aware that the animal ahead is a cassowary and perhaps being

more aware of what the animal is, are more prepared and less likely to engage

in a risky behaviour such as stop suddenly in their lane.

– The findings related to intentions and willingness were mixed across both driving

behaviours and time of day. Trends in the results reflected stronger intentions

and willingness to slow down after viewing the message for all messages except

message concepts 2 and 4, particularly at night. A contrasting trend was seen

for scanning, whereby trends reflected stronger intentions and willingness to scan
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before viewing the message for all messages except message concepts 1 and 3,

which showed some increased scores across the two measures. Participants who

viewed message concept 3 were the only group that consistently reported higher

post-message intention and willingness scores for both driving behaviours except

for willingness to scan during the day.

– Notably, message concept 3 was the only concept that did not state that the

animal detected was a cassowary (i.e., the message read ‘Animal Ahead’) and was

also the only message that received significantly higher post-message scores for

attitudes, intentions, and willingness to perform both driving behaviours at night.

These findings suggest participants who viewed message 3, as the only message

of the four messages tested, that did not identify the animal may be more inclined

to engage in these safe driving behaviours because they are unsure what animal

to expect, particularly when driving at night when visibility might be compromised.

• In terms of preferred driving strategies, there was no significant difference in the per-

ceived usefulness of the four strategies investigated (i.e., ‘Slow down, look out’, ‘Look

out, slow down’, Reduce speed, be alert’, ‘Be alert, reduce speed’). However, when

asked to provide reasoning for their preferences, the most common response from

participants was that slowing down was the more important of the two driving be-

haviours and, thus, should be presented fist. There were no substantial differences

between participants’ preference for the wording of this strategy, which suggests that

‘slow down’ or ‘reduce speed’ are both appropriate options.

• When asked to offer suggestions to improve the driving strategies, of those who did

respond to this question, there were mixed responses regarding whether the type of

animal should be identified or not, though a greater proportion of those who respon-

ded were in favour of specifying the type of animal (via text or image). This finding

may reflect the discrepancies in performance observed between the four message

concepts across the quantitative measures, and may further reiterate the possibility

that the strength of certain messages (or aspects of) may differ depending on contex-

tual elements (e.g., time of day, type of animal) and the priorities of the signage (i.e.,

whether the understanding that the message is a real-time warning is a higher priority

than seeing increases in intentions to engage in the safe driving behaviour)

• When considering the practical implementation of the signage, participants offered

several suggestions regarding design elements and placement of the signage. The

most frequently offered suggestions were:
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– The most common suggestion offered by participant regarding design elements

was that the sign should feature flashing lights to attract attention. Several parti-

cipants also emphasised the need for motorists to understand the real-time nature

of the warning and expressed concerns that motorists may become complacent if

the signs are consistently active and/or they do not see the animal that they have

been informed has been detected. These findings speak to the importance that

the sign remain blank and only activate (by flashing on) only when an animal has

been detected. In the longer term, such findings also signal the potential value

of a broader public education campaign to raise awareness of this messaging

technology so that motorists are aware of it when they encounter it on-road.

– Although that the use of colour and typography was frequently commented upon

in the focus groups in Study 1, very few participants mentioned these design ele-

ments in their feedback in Study 2. All four message concepts tested in the present

study were monochromatic (amber) and featured the same style of lettering; and

each received similarly strong results across measures. This finding suggests that

the intricacies related to the design of the signage are unlikely to be important

factors when it comes to influencing driving behaviour. Conversely, the findings

could support the choice of lettering and font colouring were as relevant and

effective as any other option that a participant could potentially consider.

– Several participants also reported that it was important for them to know how

long, in terms of distance, that can expect to see the animal and when they can

return to regular driving practices. This finding, alongside findings related to the

need for motorists to understand that that the message is a real-time warning once

again speaks to the importance of implementing a broader education campaign to

accompany the instalment of the signage and that continues to evolve alongside

the capabilities of the detection technology.

4.4. Conclusions

4.4.1 Key Findings

This program of research applied the SatMDT [1] to develop and evaluate messages that

sought to (i) alert drivers to the real-time presence of an animal on or near the road, and

(ii) encourage drivers to adopt safe driving behaviours (i.e., slow down and scan the road
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environment) to minimise the risk of a potential accident due to the presence of the animal.

The messages were to be displayed as part of a larger project testing an innovative large

animal activated roadside monitoring and alert (or LAARMA) system. The following section

summaries the key findings that can be drawn from this research.

4.4.1.A. Message Development

Study 1 explored participants’ responses and perceptions towards a series of preliminary

dual-screened message concepts intended on display on a roadside VMS. There was no

single message concept that was preferred as it was, instead participants drew out specific

elements of each screen of each of the presented concepts that they found to be effective

or ineffective. For Screen 1, participants reported that the combination of text and image,

rather than a text-only or image-only’ design, would be most effective. Participants reported

a preference for terms including ‘cassowary detected’, ‘cassowary ahead’, and ‘cassowary

seen’, citing that these terms were stronger indicators that the message was a real-time

warning that an animal was in the vicinity. Some participants reported concerns about

identifying the type of animal as it might encourage some motorists to become distracted to

try and see the animal; however, most participants agreed that specifying the type of animal

would help drivers scan more purposefully and anticipate how the animal might behave

based on their prior knowledge. For Screen 2, participants reported a preference for the

driving strategies ‘Look out and slow down’ and ‘Reduce your speed. Be alert.’, although

the latter received mixed responses. Regardless of the specific wording of the strategies,

participants reported that the instruction to slow down was the more important of the two

strategies and, thus, ought to be presented first. Participants also reported that the strategies

should be shortened, highlighting the need for the message to be simple and easy to read.

For general comments about the messages, participants emphasised that it was essential that

motorists understood it was a real-time warning that animals were in the immediate area,

and that the presence of said animal is understood to be road hazard rather than a local

attraction. To assist in disseminating this knowledge, participants suggested that a campaign

should be run alongside the implementation of the signage to increase public awareness of

the animal detection technology.

4.4.1.B. Message Concepts

Four message concepts were developed based on the findings from focus groups in Study 1

(see pages 15-16) and were further evaluated in Study 2. Overall, all four message concepts
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performed consistently well across all direct and indirect measures of effectiveness, which

suggests that the implementation of any of these concepts would likely have the intended

effects on driving behaviours. However, there were instances where some concepts outper-

formed others on specific measures and suggests that there is scope to selectively apply

messages according to the parameters that are considered of highest priority. The following

summaries the key findings from Study 2 and highlights the areas where specific message

concepts were observed to have stronger effects.

Study 2 found no substantial differences between the four message concepts in terms of

message effectiveness, with all having mean scores that suggest that participants found their

allocated message relatively effective. Participants in all four message concept conditions

also perceived their allocated message to be more influential on themselves than on other

motorists in general and other motorists of a similar age and gender. Given that individuals

may be more persuaded by messages that they perceive are more relevant to themselves

than others, it is important that motorists perceive that message have a greater influence on

themselves compared to other motorists.

The mean scores related to message rejection showed that participants generally disagreed

that they would stop suddenly in their lane to try and see the animal, slow down and move off

to the side of the road to try and see the animal, or simply ignore the messaging if they saw

the message while driving. The mean scores also showed that participants had a stronger

assumption that the message was a real-time warning rather than a general warning, with

significantly higher scores reported by those who viewed message concept 1 and message

concept 2. These two concepts featured the same text (i.e., Screed 1: ‘Cassowary detected’,

Screen 2: ‘Slow down, look out’) and may suggest that the language used in these concepts

better conveys the immediacy of the message.

The mean scores for attitudes, intentions, and willingness to slow down and scan when

driving during the day and during the night were relatively high (i.e., 5 or 6 and above on

a 7-point scale) both before and after viewing the message, indicating that sample were

consistently well-receiving of the importance of messaging about the presence of animals in

the road environment.

Participants in all four message concept conditions reported more favourable attitudes

towards slowing down and scanning the road environment, during the day and night, after

viewing the message. Participants reported significant increases in attitudes towards slowing

down after viewing message concept 1 (day and night), and message concepts 2 and 4

(day only). Those who viewed message concept 3 reported significant increases in attitudes
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towards both behaviours during the day and night.

The results for intentions and willingness were mixed, with scores for some message con-

cepts observed to increase for certain behaviours are certain times of the day and decrease

for others. It is unclear why these discrepancies occurred, but it may due to ceilings effects

given the already high pre-message scores (and noting that mean scores tended to be slightly

lower for attitudes, hence why these effects may not have appeared in attitudes) Trends in the

results showed that participants reported higher intent and willingness to slow down during

the day after viewing the message but showed lower intent and willingness to scan regard-

less of the time of day. Notably, message concept 3 showed the most consistent increases

in intent and willingness to perform both behaviours, and participants reported significantly

higher intention and willingness to slow down and scan at night. As message concept 3 was

the only message that did not identify the type of animal that had been detected (i.e., Screen

1: ‘Animal ahead’), this finding may suggest that participants would be more inclined to slow

down and scan when they are unsure what they are looking for during the night where

visibility is already comprised.

Participants in all four message concept conditions reported that it was quite unlikely (i.e.,

reported scores of 3 or less on a 7-point scale) that they would stop suddenly to try and

see the animal before viewing the message, and these scores decreased further after seeing

the message. Significant decreases in scores were observed from Message concepts 1 and 2

(during the day and night) and message concept 4 (night only). These three message concepts

all identify the type of animal and may suggest participants were less inclined to stop because

they were aware of what they ought to be looking for (i.e., had some understanding of how to

react to the situation) or potentially because the specific animal in question was a cassowary.

4.4.1.C. Preferred Driving Strategies

Study 2 evaluated participants’ preferred driving strategies by asking them to rate the extent

to which they agreed each strategy was useful. There were no significant differences found

between the four driving strategies and participants reported all strategies to be relatively

useful (i.e., provided scores of 5 or 6 or above on a 7-point scale). However, when asked

to provide reasoning for their preferences, commonly reported that slowing down was the

more important of the two driving behaviours and suggested that this strategy be presented

first which reflects the findings of Study 1. Participants reported no substantial difference in

preference for ‘slow down’ versus ‘reduce speed’, which suggests that either strategy would

be appropriate for future messaging.
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4.4.1.D. Additional Considerations

Three additional themes consistently emerged from the focus groups in Study 1 and the qual-

itative responses in Study 2. First, participants often expressed and opinion on whether the

message should name the type of animal that has been detected. Across both studies, a

greater proportion of participants reported that it would be useful to identify the animal in

the message; however, this finding may also further underscore the possibility that messages

(or elements of) may be more suited to specific contexts (e.g., time of day) or to fulfil higher

priorities (e.g., emphasising the real-time nature of the warning). Second, participants repor-

ted that it was important that motorists understood that the message was a real-time warning

and expressed concerns that motorists might become complacent if the sign were to remain

activated and/or they did not come across any animals while driving. Third, and following

on from the previous point, participants reported the implementation of the signage should

be accompanied by a public campaign to raise awareness of the messaging and associated

animal detection technology.

4.4.2 Strength and Limitations

A strength of this mixed-methods research was that it was guided by a theoretical frame-

work (i.e., the SatMDT) in developing, concept-testing, and evaluating messages aimed to

alert drivers to the presence of and animal on the road and to encourage safe driving beha-

viours to avoid collisions with the animal. Further, the research included several direct (i.e.,

TPE, message rejection) and indirect (i.e., attitudes, intentions, willingness, and likelihood of

stopping) measures of message effectiveness to provide an in-depth evaluation of four of the

message concepts examined in the evaluation study, Study 2. Also in Study 2, the inclusion of

the control (no message) condition allowed for comparisons to made with the experimental

(message) conditions on the indirect measures of effectiveness, thus providing insights into

the effectiveness of messaging relative to a baseline of no messaging at all option.

Despite these strengths, there are some limitations of this research which also need to be

acknowledged. First, participants comprised a convenience sample recruited via an Australian

marketing recruitment company. Moreover, the sample of Study 2 comprised primarily of

older, female motorists who held an open licence. Therefore, the Study 2 sample may not

accurately represent the diversity of motorists in Australia who will encounter areas where

this signage is displayed. Second, the research relied on self-report data which only assessed

how participants perceived they would respond to each message. Additionally, the research

only assessed the message concepts immediately as they were shown, and further longer-
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term assessment is required to determine the level of effectiveness these messages have

in influencing actual driver behaviour. The latter forms part of subsequent research in the

overall LAARMA project which will comprise a simulator study as well as an on-road field

trial in North Queensland.

4.5. Practical Consideration for Implementation

Based on the findings from the current program of research, three key practical considerations

are offered regarding the future implementation of messaging design to alert motorists that an

animal has been detected in the area and, subsequently, engage in safe driving behaviours

(i.e., slowing down and scanning). Specifically, these considerations relate to content of the

message, the design of the signage and broader aspects associated with the implementation

of the signage:

1. All four message concepts performed relatively well in Study 2; however, certain mes-

sage concepts did demonstrate stronger performance on specific parameters. This

finding suggests that, while all four message concepts are likely to have the anticip-

ated impact on the two driving behaviours and thus could further developed into final,

ready-to-be-implemented signage, it may be pertinent to identify what the key priorit-

ies for the messages and implement specific messages based on their performance in

these metrics. For example, message concepts 1 and 2 (or elements of) would be more

appropriate if it is determined that the most important factors are to ensure motorists

understand that the message is a real-time warning, and that the message is unlikely

to result in motorists stopping suddenly to see the animal.

2. Participants across both studies echoed the importance that motorists understand that

the message is a real-time warning that an animal had been detected in the area,

particularly in the interest of avoiding driver complacency. In Study 2, participants

reported that including flashing lights would be useful to reflect the real-time nature of

the messages. These findings speak to the importance that the signage does remain

blank when no animal has been detected, and only activates (i.e., flashes on) when an

animal has been detected (with the understanding that is how the signage was planned

to work). Regarding other design elements, although participants in Study 1 reported

preferences for different colours and certain typography styles, participants in Study 2

did not report strong preferences for these aspects. All four message concepts in Study

2 received strong results using the traditional monochromatic (amber) colour scheme
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and using uppercase for the text on screen 1, and title case for screen 2, which suggests

that, at least for the initial simulator and field testing, the current design elements will be

appropriate, and any future changes to these elements will require further evaluation

before implementation.

3. Participants in Study 2 reported that it was important to know the distance of the

detection zone so that they knew when it was safe to return to their regular driving

behaviours. This finding, alongside those related to the importance of understanding

the real-time nature of the warning, speak to the need for broader public education

about the animal detection technology, and for these education campaigns to continue

to evolve alongside evolutions in the technology.
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5.1. Introduction

5.1.1 Background

This study was conducted by Dr Sebastien Demmel, Dr Xiaomeng Li, Dr Mohammed Elhen-

awy, and Prof Sebastien Glaser. This study represented the first of two studies devised as the

means to evaluate individuals’ behavioural responses to the messaging triggered as part of

the LAARMA system. Specifically, this study investigated drivers’ response to two messaging

strategies using a driving simulator. The messaging strategies that were evaluated were

defined previously in Chapter 4, and the two most effective were selected for assessment in

this simulator study. The research consisted of testing several hypotheses regarding drivers’

reaction regarding the effectiveness of the strategies and the impact of the messaging on

driving behaviour (as measured within a driving simulator). The second of the behavioural

evaluation studies, i.e., the field study, is presented in Chapter 7.

5.1.2 Method

The study comprised two balanced groups of participants resulting in a total of 54 drivers.

Fifty-one participants completed the study (23 were males, 27 were females, and one reported

as ‘other’). The participants were aged between 17 and 71 years old, with an average age of

31.8 years old (SD = 14.0 years). The participants reported that they had held their driver

licence for an average of 13.0 years, ranging from 1 year to 51 years, and they drove 8.8

hours in an average week. The driving simulation environment replicated the two initial sites

where the LAARMA system was expected to be installed. These two sites were repeated three

(a) (b)

Figure 5.1.: Two scenarios with cassowary involvement: (a) cassowary walking along the road, and (b) cas-

sowary crossing the road.
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(a) (b) (c)

Figure 5.2.: Visuals for the VMS. The display for 𝑉𝑀𝑆1 alternated the images (a) and (c), while the display for

𝑉𝑀𝑆2 alternated the images (b) and (c).

times, with different scenarios: with a cassowary walking along the road, no cassowary, and

a cassowary crossing the road. The two scenarios involving a cassowary are shown in Figure

5.1. Two different messages (from Study 2 - the messaging evaluation study) were assessed

(see Figure 5.2). The driving simulator system recorded all information in terms of driver

action and vehicle trajectory in relation to the scenario and messaging shown. Two zones

were defined for the analysis, the approach zone at the time of message display and event

zone after the message and the area of (potential) detection of a cassowary.

5.1.3 Key Findings

The comparative analysis of driver behaviour comprised assessing individuals’ responses

in scenarios involving an animal (i.e., a cassowary) crossing a road or walking alongside

the road and for which messaging was triggered via the LAARMA system. These messages

were compared with static sign-based messages. The results revealed distinct patterns. Both

scenarios demonstrated that messaging triggered on the VMS effectively reduced the nor-

malised average speed of drivers in the approach zone window (i.e., zone where messages

are triggered 5 seconds to the actual positioning of the VMS). For the scenario involving a

cassowary crossing the road, 𝑉𝑀𝑆1 significantly reduced speed, while for the cassowary

walking alongside the road, 𝑉𝑀𝑆2 showed a statistically significant reduction in speed with

𝑉𝑀𝑆1 trending towards statistical significance. During the event window zone (i.e., from the

VMS into the detection zone where the cassowary appears), neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2 sig-

nificantly reduced drivers’ speeds in either scenario. However, 𝑉𝑀𝑆1 was found to improve

driving smoothness (celeration at the event) during the animal crossing scenario and signific-

antly increased maximum deceleration; results which indicate overall improvements in driver

responsiveness. These findings indicate that VMS, particularly the messaging as shown in

𝑉𝑀𝑆1 (see Figure 5.2), have potential benefits for road safety by prompting cautious beha-
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viour as drivers slow down when approaching potential hazards. The increased awareness

(of a hazard) raised by display of a message on the VMS likely contributes to these safety

benefits, even when animals remain roadside and do not cross the road. Overall, messaging

displayed on roadside VMSs appear to be a valuable tool for managing high-risk areas,

enhancing driver caution as evidenced by them slowing down their travelling speeds when

approaching both cassowary-crossing and -walking scenarios. In the driving simulator, it is

reasonable to suggest that the effect of such messaging is greatest in the approach zone

where drivers respond and reduce speed on sighting of the messaging on the VMS. During

the subsequent event zone, as a simulated drive, given there is no actual risk that a driver

will collide with a cassowary, the speed reductions witnessed initially at the approach zone

are relatively larger (and significant) compared with in the event zone window.

5.2. Study and Participants

The study was approved under a QUT low risk ethics application: “Understanding drivers’

experiences with large animals crossing roads” (QUT Ethics Approval Number 7859).

A total of 54 participants were recruited for the study. Participants were recruited through

social media posts, and emails which were shared with QUT classifieds (an online email

list for QUT staff) and casual staff groups. All participants were required to have a valid

Queensland (or interstate/international equivalent) open driver licence and drive a minimum

of 3 hours per week. Two participants commenced but did not complete the study due

to motion sickness experienced in the simulator, and one participant did not complete the

experiment due to apparatus-related technical issues. Ultimately, 51 participants completed

the experiment. Among the 51 participants, 23 (45.1%) were males, 27 (52.9%) were females

and one reported as “other”. The participants were aged between 17 and 71 years old, with

an average age of 31.8 years old (SD = 14.0 years). The participants reported that they have

held their driver licence for an average of 13.0 years, ranging from 1 year to 51 years, and

they drove 8.8 hours in an average week.

The participants, during the experiment, were exposed to one specific messaging strategy,

which included the visuals in Figure 5.2. The display for 𝑉𝑀𝑆1 alternated the Figures 5.2a

and 5.2c, while the display for 𝑉𝑀𝑆2 alternated the Figures 5.2b and 5.2c.
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5.3. Approach and Event Windows Analysis

Figure 5.3.: Map of event zones highlighting driver-animal interaction points and signage locations.

The simulated road environment was based on two real-world locations in FNQ, one on the

Kennedy Highway in Kuranda and the other on Tully Mission Beach Road in Mission Beach.

Sections of the real roads were reproduced in the simulator and duplicated twice to form a

longer road, where each site would appear three times. In Figure 5.3, the reproduced areas

(labelled RX-Y, with X representing the number of the repeated section from 1 to 3, and Y

representing the ID of the section: 1 for the Kuranda site and 2 for the Mission Beach site)

are marked by pink dots along the road, whereas other sections were created ex-nihilo to

connect those sections.

In the reproduced real sections in the simulator, the road layout was faithful to the real-

world locations, with two lanes single carriageway and additional turning lanes at intersec-

tions if present (see Figure 5.4 for examples). The speed limit was also the same as on real

roads: most of the time the speed limit was 80 km/h, but some sections were limited to

60 km/h or even 50 km/h. The connecting sections also consisted of a two lanes single

carriageway with a speed limit of 80 km/h. The environment around the road was designed

to be rural, like the real sites. In the reproduced sections, efforts were made to place objects

Section 5.3: Approach and Event Windows Analysis 149



(a) (b)

(c) (d)

Figure 5.4.: Comparison of real (top) and simulated (bottom) environments. (a) and (c) show the Kuranda site,

(b) and (d) represent the Mission Beach site.

in locations similar to their real-world counterparts, within the limits of the simulator’s objects

library. Road signs were also placed at their actual locations.

The analysis in this study was event-based, focusing on the specific zones where inter-

actions between drivers and animals occurred. The map in Figure 5.3 identifies four main

event zones: at locations R1-1 and R1-2, the animal (i.e., cassowary) is walking on one side of

the road without crossing, while at locations R3-1 and R3-2, the animal (i.e., the cassowary)

crosses the road. To effectively study driver behaviour, it was necessary to define a smaller

analysis window. This window needed to be sufficiently large to capture driver’s behaviour

upon seeing the message on the VMS, yet not so large as to dilute the effect of the message

in the event area (where the cassowary was detected). This approach window ensured that

the analysis remained focused and accurately reflected driver’s response to the messaging

and presence of the cassowary.

In the analysis of the simulated driving behaviour, we defined two key windows: the event

window and the approach window. The event window captured driver behaviour between

the messaging on the VMS and the point where the Time-To-Collision (TTC) equals zero. The

approach window started 5 seconds before reaching the message on the VMS and ended

exactly at the VMS. In the following paragraphs, we provide detailed definitions of these two

critical points: when TTC equals zero and when the driver reaches the VMS.

The two subfigures in Figure 5.5 illustrate the time series of distances on the road from
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(a) (b)

Figure 5.5.: Visualisation of the Cartesian animal distance, time to reach the “meeting point” for the subject

vehicle (SV TTC), and SV distance during: (a) animal walking interactions (R1-1 and R1-2), and (b)

animal crossing interactions (R3-1 and R3-2). Note that the y-axis represents time for the SV TTC

curve, and distance for both the Cartesian animal distance and SV distance curves.

the vehicle to the meeting point with the animal, the TTC, and the Cartesian distance (i.e.

straight-line distance) between the subject vehicle (SV) and the animal.

Figure 5.5a depicts the time series within the event zones where the animal does not cross

the road, while Figure 5.5b shows the time series within the event zones where the animal

crosses the road. In both subfigures, the blue dashed line represents the Cartesian animal

distance, the red dotted line represents the SV TTC, and the yellow dashed line represents

the SV distance.

It is clear from Figure 5.5 that the SV distance to the animal on the road and the TTC are

crucial for selecting the event analysis window. This means that the analysis window should

end at the point where both the TTC and the distance between the animal and the SV on

the road are zero. The start point of the event analysis window should be the sign location

which is identified using the Cartesian direct distance from the SV to the VMS/static sign and

the time to reach the sign as illustrated in Figure 5.6.

5.3.1 Rationale for Event and Approach Windows Selection

Based on the setup of the LAARMA, the VMS is positioned relative to the sensors in such

a way that it effectively extends the driver’s vision, allowing them to become aware of the

animal well in advance of actually seeing or interacting with it. This early awareness enables

the driver to begin reducing speed before even seeing the animal. Given this, the event
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(a) (b)

Figure 5.6.: Visualisation of the Cartesian direct distance from the SV to the VMS/static sign (Sign Distance) and

the time to reach the sign (Sign TTC) during: (a) animal walking interactions (R1-1 and R1-2), and (b)

animal crossing interactions (R3-1 and R3-2). Note that the y-axis represents time for the Sign TTC

curve, and distance for the Sign Distance curve.

window is defined as starting from the VMS and ending when the TTC reaches zero,

marking the point of direct interaction.

Additionally, we define the approach window as the period leading up to the event,

beginning 5 seconds before the VMS and ending at the VMS location itself. This ap-

proach window captures the driver’s initial response to the system, including any potential

speed adjustments made upon seeing the VMS, before entering the critical event zone.

5.4. Background

5.4.1 Celeration

Celeration is a measure of driving smoothness. The following equation defines the celeration

behaviour of the driver in a homogeneous driving environment.

𝑐 =
1
𝑁

(
𝑁∑
𝑛=1

��𝑎𝑛𝐼Speed𝑛>4.3 km/h

��)
where 𝑐 is the estimated celeration, 𝑁 is the length of the analysis window, 𝑎𝑛 is the

measured acceleration at the timestamp 𝑛, and 𝐼Speed𝑛>4.3 km/h is an indicator function returns

one if the vehicle is moving and zero otherwise.
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5.4.2 Average Normalised Speed

Regarding the average normalised speed response, the average normalised speed is calcu-

lated using the formula:

Average Normalised Speed =

∑
𝑖∈𝐴𝑊

𝑆𝑝𝑒𝑒𝑑𝑖
𝑆𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡

|𝐴𝑊 |

where 𝐴𝑊 is the set of observed speeds in the Analysis Window, and |𝐴𝑊 | is the car-

dinality operator representing the number of observed speeds. This formula normalises the

average speed by the speed limit, providing a comparative measure of how drivers’ speeds

relate to the posted speed limit within the analysis period.

5.4.3 Predictor Variables and Statistical Model Outputs

In the simulator data analysis, we used the following predictors to explain the variability in

the studied response:

1. Participant age: This variable represents the age of the participant in years.

2. Participant gender: A categorical variable with three levels; male (participant_Gender_1),

female (participant_Gender_2), and other (participant_Gender_3). Since the model uses

k-1 (i.e., two) indicator variables to represent the three levels, male (participant_Gender_1)

is coded as [0 0] and is included as part of the intercept, making it the reference cat-

egory.

3. Participant driving experience: Represented by the variable participant_Licenceyears,

it measures the participant’s driving experience in years.

4. Participant driving hours per week: This variable (participant_HoursDrivePerWeek) rep-

resents the average number of hours the participant drives per week.

5. Treatment/intervention: A categorical variable with three levels: “Static” (represent-

ing a static sign), “Sign_VMS_1” (representing 𝑉𝑀𝑆1), and “Sign_VMS_2” (representing

𝑉𝑀𝑆2). As with the gender variable, we used two indicator variables to represent these

levels in the model. The static sign is coded as [0 0] and is included in the intercept,

serving as the reference category against which the other two levels (Sign_VMS_1 and

Sign_VMS_2) are compared.
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For the sake of completeness we provide the statistical model outputs description (column)

below:

1. Name: Lists the predictor variables included in the model.

2. Estimate: The estimated effect of each predictor on the dependent variable.

3. SE (Standard Error): The uncertainty or variability around the estimate.

4. tStat (t-Statistic): The ratio of the estimate to its standard error, used to test significance.

5. DF (Degrees of Freedom): The number of degrees of freedom associated with the

estimate.

6. pValue: The probability that the observed effect occurred by chance; indicates statistical

significance.

5.4.4 Statistical Methods and Modelling

Advanced statistical modelling techniques were used to ensure the models captured the driv-

ing responses adequately. Generalised linear mixed effect (GLME) models are developed to

enable analysis of dependent data by introducing random variables (i.e., random effects) at

the lower levels of the model. For example, there are repeated measurements from the same

participant and from the same location (i.e., R1-1, R1-2, R3-1 and R3-2). To capture the correl-

ation between the repeated measurements at these levels, random effects were introduced

at the participant and location levels.

5.5. Results Analysis

In this study, we analyse the data collected at locations where animals cross the road separ-

ately from the data collected at locations where animals only walk by the side of the road.

We do this because we believe these two scenarios present different levels of risk, leading

to distinct driver behaviours. The purpose of this statistical analysis is to test the following

safety hypotheses related to the use of the LAARMA system in comparison to static signs:

1. Hypothesis 1: Using LAARMA reduces the normalised average speed of drivers.
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2. Hypothesis 2: LAARMA enhances driving smoothness, as indicated by improved celer-

ation during the event.

3. Hypothesis 3: LAARMA eliminates or reduces harsh deceleration of vehicles compared

to static signs at the event window.

5.5.1 Animals Walk by the Side of the Road

5.5.1.A. Normalised Average Speed at the Approach

Name Estimate SE tStat DF pValue

(Intercept) 0.933458 0.093152 10.02076 196 2.40E-19

participant_age -0.00316 0.002154 -1.46742 196 0.143866

participant_Gender_2 -0.01906 0.013571 -1.40447 196 0.161761

participant_Gender_3 -0.03196 0.047889 -0.66733 196 0.505348

participant_Licenceyears 0.003371 0.002257 1.493814 196 0.136832

participant_HoursDrivePerWeek 0.000128 0.00131 0.097707 196 0.922265

Sign_VMS_1 -0.02859 0.015984 -1.78849 196 0.075241

Sign_VMS_2 -0.03369 0.015767 -2.13674 196 0.033859

Table 5.1.: Statistical analysis of normalised average speed at the approach window.

In this analysis, we examined the effect of the message on the VMS on the normalised

average speed of drivers during the approach window, comparing these messages to static

sign-based messages. The statistical results in Table 5.1 showed that both 𝑉𝑀𝑆1 and 𝑉𝑀𝑆2

had an impact on drivers’ speed. Specifically, the estimate for 𝑉𝑀𝑆1 was -0.02859 with a

p-value of 0.075241, suggesting a trend towards reduced speed, though not reaching conven-

tional levels of statistical significance. For 𝑉𝑀𝑆2, the estimate was -0.03369 with a p-value

of 0.033859, indicating a significant reduction in speed associated with the messaging on

the VMS compared to the static sign-based messages.

These findings imply that messages on the VMS (as devised in the earlier studies of this

project), and particularly 𝑉𝑀𝑆2, effectively reduced drivers’ speed in the approach window

compared to the static sign-based messages. Thus, the findings suggest such messaging on

the VMS contributed to improvements in road safety by encouraging drivers to slow down
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as they approached the animal. For example, at a speed of 60 km/h, the average speed

reduction for 𝑉𝑀𝑆2 is approximately 2.02 km/h.

5.5.1.B. Celeration at the Approach

Name Estimate SE tStat DF pValue

(Intercept) -0.13102 0.193962 -0.67551 196 0.500145

participant_age 0.017428 0.010151 1.716825 196 0.087591

participant_Gender_2 0.102233 0.063945 1.598771 196 0.111482

participant_Gender_3 -0.12253 0.225645 -0.54303 196 0.587726

participant_Licenceyears -0.01639 0.010633 -1.5414 196 0.124833

participant_HoursDrivePerWeek -0.00673 0.006171 -1.09098 196 0.276619

Sign_VMS_1 0.086838 0.075316 1.152981 196 0.250322

Sign_VMS_2 0.015922 0.074293 0.214321 196 0.83052

Table 5.2.: Statistical analysis of celeration at the approach window.

The analysis of celeration at the approach, where celeration is a measure of driving

smoothness, focused on comparing the effects of messaging on the VMS relative to static

sign-based messages. The statistical results in Table 5.2 indicated that neither 𝑉𝑀𝑆1nor

𝑉𝑀𝑆2 showed statistically significant differences in drivers’ celeration compared to the static

sign-based messages. Specifically, the estimate for 𝑉𝑀𝑆1 was 0.086838 with a p-value of

0.250322, and for 𝑉𝑀𝑆2, the estimate was 0.015922 with a p-value of 0.83052.

These findings suggest that the presence of messaging on the VMS did not significantly

influence drivers’ celeration behaviour in the approach window compared to the static sign-

based messages.

5.5.1.C. Normalised Average Speed at the Event

The statistical analysis of normalised average speed at the event focused on comparing the

effects of the messaging on the VMS to static sign-based messages. As shown in Table 5.3,

neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2 had a statistically significant effect on drivers’ speed during the

event window. Specifically, the estimate for𝑉𝑀𝑆1 was 0.004813 with a p-value of 0.905227,

and for 𝑉𝑀𝑆2, the estimate was -0.01614 with a p-value of 0.685784.
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These findings suggest that the presence of messaging on the VMS did not significantly

influence drivers’ speed during the event window compared to static sign-based messages.

Name Estimate SE tStat DF pValue

(Intercept) 0.90783 0.103818 8.744447 94 8.57E-14

participant_age -0.00181 0.005433 -0.33278 94 0.740041

participant_Gender_2 -0.02482 0.034227 -0.72515 94 0.470161

participant_Gender_3 -0.22419 0.120777 -1.85625 94 0.06655

participant_Licenceyears 0.00103 0.005691 0.18092 94 0.85682

participant_HoursDrivePerWeek -0.00342 0.003303 -1.03592 94 0.302896

Sign_VMS_1 0.004813 0.040313 0.119382 94 0.905227

Sign_VMS_2 -0.01614 0.039765 -0.40584 94 0.685784

Table 5.3.: Statistical analysis of normalised average speed at the event window.

5.5.1.D. Celeration at the Event

Name Estimate SE tStat DF pValue

(Intercept) 0.54001 0.141676 3.811582 93 0.000248

participant_age -0.00871 0.007438 -1.17078 93 0.244679

participant_Gender_2 0.052128 0.046845 1.112776 93 0.268673

participant_Gender_3 -0.00573 0.164454 -0.03448 93 0.972283

participant_Licenceyears 0.007903 0.007778 1.016043 93 0.312245

participant_HoursDrivePerWeek 0.00769 0.00452 1.701109 93 0.092264

Sign_VMS_1 -0.03813 0.055042 -0.69278 93 0.490173

Sign_VMS_2 0.017519 0.054345 0.322376 93 0.747872

Table 5.4.: Statistical analysis of celeration at the event window.

The statistical analysis of celeration at the event examined the impact of the messaging

on the VMS on drivers’ celeration compared to static sign-based messages. The results in

Table 5.4 showed that neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2 had a statistically significant effect on driver
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celeration. Specifically, the estimate for 𝑉𝑀𝑆1 was -0.03813 with a p-value of 0.490173,

and for 𝑉𝑀𝑆2, the estimate was 0.017519 with a p-value of 0.747892.

These findings suggest that the presence of messaging on the VMS did not significantly alter

drivers’ celeration behaviour during the event compared to the static sign-based messages.

5.5.1.E. Max Deceleration at the Event

Name Estimate SE tStat DF pValue

(Intercept) -2.62151 0.921085 -2.84611 93 0.005445

participant_age 0.03923 0.048355 0.811289 93 0.419271

participant_Gender_2 -0.67282 0.304557 -2.20917 93 0.029619

participant_Gender_3 0.081093 1.06917 0.075847 93 0.939704

participant_Licenceyears -0.03461 0.05057 -0.68438 93 0.495438

participant_HoursDrivePerWeek 0.001203 0.029389 0.040945 93 0.967427

Sign_VMS_1 0.593694 0.357846 1.659075 93 0.100469

Sign_VMS_2 0.43463 0.353313 1.230154 93 0.221742

Table 5.5.: Statistical analysis of maximum deceleration at the event window.

The statistical analysis of maximum deceleration at the event aimed to compare the effects

of messaging on the VMS with static sign-based messages on driver behaviour. The results

in Table 5.5 showed that neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2 had a statistically significant effect on

drivers’ maximum deceleration. The estimate for 𝑉𝑀𝑆1 was 0.593694 with a p-value of

0.100469, and for 𝑉𝑀𝑆2, the estimate was 0.43463 with a p-value of 0.221742. Moreover,

participant_Gender_2 (representing female participants) appears to have a statistically signi-

ficant effect on maximum deceleration. The estimate for participant_Gender_2 is -0.67282,

with a p-value of 0.029619, which is below the typical significance threshold of 0.05. This in-

dicates female participants tend to have stronger deceleration compared to male participants

(the reference group).

Although 𝑉𝑀𝑆1 approached significance, these findings suggest that when the animal is

on the side of the road, the presence of the VMS does not substantially influence maximum

deceleration compared to static signs.
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5.5.1.F. Animal Walking Conclusion

The analysis highlights that messaging on the VMS effectively reduced the normalised aver-

age speed of drivers, particularly in the approach window, with 𝑉𝑀𝑆2 showing a statistically

significant reduction in drivers’ speed and 𝑉𝑀𝑆1 indicating a notable trend toward reduced

drivers’ speed. Such findings suggest that messaging on the VMS offers road safety benefits

by prompting drivers to slow down as they approach potential hazards, such as animals.

However, the findings also indicate that messaging on the VMS did not significantly impact

other aspects of driver behaviour, such as celeration and maximum deceleration, during the

event window. We hypothesise that the messages may be functioning to raise drivers’ aware-

ness of the animal’s presence, but since the animals stayed on the roadside without crossing,

drivers did not slow down significantly. Consequently, no significant differences in celeration

or maximum deceleration were detected between the VMS and the static sign-based mes-

sages. It is also is reasonable to suggest that given assessment of driving behaviour within

a simulator and there being no prospect of a participant actually colliding with a cassowary,

the largest (and significant) reduction in drivers’ speed would be found on approach when

responding to the messaging being displayed rather than in the actual event zone.

5.5.2 Animals Cross the Road

5.5.2.A. Normalised Average Speed at the Approach

Name Estimate SE tStat DF pValue

(Intercept) 0.859941 0.060821 14.1389 196 9.51E-32

participant_age -0.00166 0.001876 -0.88542 196 0.377016

participant_Gender_2 -0.02484 0.01182 -2.10164 196 0.036863

participant_Gender_3 -0.03172 0.041709 -0.76054 196 0.447845

participant_Licenceyears 0.002382 0.001965 1.212004 196 0.22697

participant_HoursDrivePerWeek -0.00147 0.001141 -1.28611 196 0.199921

Sign_VMS_1 -0.03422 0.013921 -2.45829 196 0.014828

Sign_VMS_2 -0.02647 0.013732 -1.92724 196 0.055396

Table 5.6.: Statistical analysis of normalised average speed at the approach window.
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In this analysis, we examined the effect of VMS on the normalised average speed of drivers

during the approach window, comparing these messages to static sign-based messages. As

presented in Table 5.6, the statistical results showed that both 𝑉𝑀𝑆1 and 𝑉𝑀𝑆2 had an

impact on drivers’ speed. Specifically, the estimate for𝑉𝑀𝑆1 was -0.03422 with a p-value of

0.014828, indicated a significant reduction in drivers’ speed compared to the static signs. For

𝑉𝑀𝑆2, the estimate was -0.02647 with a p-value of 0.055396, suggesting a trend towards

reduced drivers’ speed, though not reaching conventional levels of statistical significance.

These findings imply that messaging on the VMS, particularly 𝑉𝑀𝑆1, effectively reduced

drivers’ speed in the approach window compared to the static signs. For example, at a speed

of 60 km/h, the average speed reduction for 𝑉𝑀𝑆1 is approximately 2.05 km/h.

5.5.2.B. Celeration at the Approach

Name Estimate SE tStat DF pValue

(Intercept) -0.51684 0.306166 -1.68809 196 0.092983

participant_age 0.043367 0.016024 2.706416 196 0.007401

participant_Gender_2 0.20751 0.100937 2.055846 196 0.041123

participant_Gender_3 -0.29821 0.356179 -0.83725 196 0.403471

participant_Licenceyears -0.04806 0.016785 -2.86316 196 0.004651

participant_HoursDrivePerWeek 0.001166 0.009741 0.119685 196 0.904855

Sign_VMS_1 -0.0486 0.118885 -0.40881 196 0.683124

Sign_VMS_2 0.040283 0.11727 0.343509 196 0.731584

Table 5.7.: Statistical analysis of celeration at the approach.

In this analysis, we focused on assessing the impact of messaging on the VMS on drivers’

celeration during the approach window, comparing their response relative to static sign-based

messages. The statistical results in Table 5.7 indicated that neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2 showed

statistically significant differences in drivers’ celeration compared to the messages on the

static signs. Specifically, the estimate for 𝑉𝑀𝑆1 was -0.0486 with a p-value of 0.683124,

and for 𝑉𝑀𝑆2, the estimate was 0.040283 with a p-value of 0.731584.

These findings suggest that the presence of messaging on the VMS did not significantly

influence drivers’ celeration behaviour in the approach window compared to the static signs,

which serve as the sole reference point in the simulator study design.
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5.5.2.C. Normalised Average Speed at the Event

Name Estimate SE tStat DF pValue

(Intercept) 0.972047 0.10552 9.211945 196 5.00E-17

participant_age -0.0095 0.004438 -2.14069 196 0.033535

participant_Gender_2 -0.07692 0.027959 -2.75132 196 0.006492

participant_Gender_3 -0.11744 0.09866 -1.1904 196 0.23533

participant_Licenceyears 0.011039 0.004649 2.374397 196 0.018543

participant_HoursDrivePerWeek -0.00176 0.002698 -0.65209 196 0.515108

Sign_VMS_1 -0.03255 0.032931 -0.9885 196 0.324125

Sign_VMS_2 -0.04894 0.032483 -1.50661 196 0.133521

Table 5.8.: Statistical analysis of normalised average speed at the event window.

In this analysis, we examined the impact of VMS on the normalised average speed of

drivers during the event window, comparing the VMS messages to static sign-based mes-

sages. The statistical results, presented in Table 5.8, showed that neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2

had a statistically significant effect on drivers’ speed during the event window. Specifically,

the estimate for 𝑉𝑀𝑆1 was -0.03255 with a p-value of 0.324125, while the estimate for

𝑉𝑀𝑆2 was -0.04894 with a p-value of 0.133521.

These results indicate that, unlike in the approach window, the presence of messaging on

the VMS did not significantly influence driver behaviour in terms of speed reductions during

the event window when compared to the static signs. As previously mentioned, we believe it

is reasonable to suggest that given assessment of driving behaviour within a simulator and

there being no prospect of a participant actually colliding with a cassowary in the event zone,

the largest (and significant) reduction in drivers’ speed would be found on approach when

responding to the messaging being displayed rather than in the actual event zone.

5.5.2.D. Celeration at the Event

In this analysis, we examined the celeration behaviour of drivers at the event, where celeration

is defined as a measure of driving smoothness. The statistical analysis, presented in Table 5.9,

focused on the comparison between messaging on the VMS and static sign-based messages.

The results showed that the presence of𝑉𝑀𝑆1 significantly impacted drivers’ celeration, with
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Name Estimate SE tStat DF pValue

(Intercept) 0.397452 0.114529 3.470319 185 0.000647

participant_age 0.003192 0.00568 0.561861 185 0.574891

participant_Gender_2 0.054289 0.034769 1.561409 185 0.120136

participant_Gender_3 0.04443 0.119067 0.373148 185 0.709465

participant_Licenceyears -0.00332 0.005902 -0.56226 185 0.574621

participant_HoursDrivePerWeek 0.005483 0.003389 1.617955 185 0.107376

Sign_VMS_1 -0.09901 0.040649 -2.43575 185 0.015809

Sign_VMS_2 -0.00764 0.040214 -0.189999 185 0.849522

Table 5.9.: Statistical analysis of celeration at the event.

an estimate of -0.09901 and a p-value of 0.015809, indicating smoother driving behaviour

when 𝑉𝑀𝑆1 was present compared to static signs. In contrast, 𝑉𝑀𝑆2 did not show a

statistically significant difference, with an estimate of -0.00764 and a p-value of 0.849522.

These findings suggest that 𝑉𝑀𝑆1 was more effective in influencing driver behaviour

towards smoother driving compared to the static signs, while 𝑉𝑀𝑆2 did not significantly

alter drivers’ celeration.

5.5.2.E. Max Deceleration at the Event

The statistical analysis of the GLME model of the max deceleration at the event revealed

significant findings related to the type of signs used. As presented in Table 5.10, the results

showed that both the messages on the VMS, 𝑉𝑀𝑆1 and 𝑉𝑀𝑆2, had a significant, positive

impact on the maximum deceleration of vehicles compared to the static sign-based mes-

sages, resulting in less harsh deceleration. In particular, 𝑉𝑀𝑆1 had a stronger influence,

with an estimate of 1.205 and a highly significant p-value of 0.000351, indicating a notice-

ably smoother deceleration. Similarly, 𝑉𝑀𝑆2, with an estimate of 0.678 and a p-value of

0.0399, also significantly softer deceleration.

These findings suggest that implementing messaging on VMS can enhance driver respons-

iveness, resulting in less harsh deceleration rates (i.e. closer to zero since deceleration is

negative) when compared to drivers’ responses to traditional static sign-based messages.
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Name Estimate SE tStat DF pValue

(Intercept) -4.13298 1.050923 -3.93271 185 0.000119

participant_age 0.04086 0.046254 0.883381 185 0.378177

participant_Gender_2 -0.13623 0.283104 -0.4812 185 0.630945

participant_Gender_3 0.996165 0.969473 1.027533 185 0.305511

participant_Licenceyears -0.05439 0.04806 -1.1316 185 0.259266

participant_HoursDrivePerWeek 0.000122 0.027591 0.004411 185 0.996485

Sign_VMS_1 1.205308 0.33097 3.64175 185 0.000351

Sign_VMS_2 0.677627 0.32743 2.06953 185 0.039886

Table 5.10.: Statistical analysis of maximum deceleration with VMS and static signs at the event.

5.5.2.F. Animal Crossing Conclusion

The statistical analysis of driver behaviour in response to purpose-devised messaging on

roadside VMS compared to static sign-based messages revealed several key insights. 𝑉𝑀𝑆1

was particularly effective in reducing the normalised average speed of drivers in the ap-

proach window, indicating drivers were exhibiting increased caution as they slowed down

and approached the animal’s crossing point. However, neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2 signific-

antly impacted drivers’ speed during the event window. Interestingly, 𝑉𝑀𝑆1 also promoted

smoother driving behaviour during the event, as evidenced by significant improvements in

celeration. Additionally, both 𝑉𝑀𝑆1 and 𝑉𝑀𝑆2 significantly increased maximum deceler-

ation (i.e. speeds closer to zero), with 𝑉𝑀𝑆1 showing a stronger effect relative to its other

VMS counterpart. These findings suggest that implementing LAARMA, and particularly with

𝑉𝑀𝑆1 displayed, offers road safety benefits in terms of drivers’ increased caution and slow-

ing down; thus, making such messages (on VMS) a valuable tool for helping to address AVCs.

5.5.3 Conclusions

The driving simulator study shows that the VMS messaging strategies effectively reduce driver

speeds in the approach window, with 𝑉𝑀𝑆1 reducing speed for animal crossings and 𝑉𝑀𝑆2

for animal walking. While neither 𝑉𝑀𝑆1 nor 𝑉𝑀𝑆2 significantly impacted driver speed in

the event window, 𝑉𝑀𝑆1 improved driving smoothness and driver responsiveness during

crossings. Overall, the VMS messaging enhances road safety by increasing driver caution in

Section 5.5: Results Analysis 163



high-risk areas. A detailed comparison summary of 𝑉𝑀𝑆1 and 𝑉𝑀𝑆2 in animal crossing

and walking scenarios is presented in Table 5.11.

Aspect Animal Crossing Animal Walking Comparison Summary

Approach

Window

Speed

𝑉𝑀𝑆1 significantly

reduced speed. At a

speed of 60 km/h,

the average speed

reduction is approx-

imately 2.05 km/h)

𝑉𝑀𝑆2 significantly

reduced speed.at a

speed of 60 km/h,

the average speed

reduction is approx-

imately 2.02 km/h).

𝑉𝑀𝑆1 showed a

trend towards re-

duced speed.

Both scenarios show that

VMS effectively reduces

normalised average

speed in the approach

window.

Event Window

Speed

Neither 𝑉𝑀𝑆1 nor

𝑉𝑀𝑆2 significantly

impacted speed.

Neither 𝑉𝑀𝑆1 nor

𝑉𝑀𝑆2 significantly

impacted speed.

VMS did not significantly

impact driver speed dur-

ing the event window in

either scenario.

Celeration

(Driving

Smoothness)

𝑉𝑀𝑆1 improved

driving smoothness

(celeration at event)

significantly.

VMS did not signific-

antly impact celera-

tion.

𝑉𝑀𝑆1 enhances driving

smoothness during an-

imal crossings; no sig-

nificant impact observed

during animal walking.

Event Window

Maximum

Deceleration

Both 𝑉𝑀𝑆1 and

𝑉𝑀𝑆2 significantly

increased maximum

deceleration by 1.21

m/sec2 and 0.68

m/sec2, respectively,

with 𝑉𝑀𝑆1 showing

a stronger effect.

VMS did not signi-

ficantly impact max-

imum deceleration.

Both 𝑉𝑀𝑆1 and 𝑉𝑀𝑆2

significantly increased

maximum deceleration

(make it closer to zero) in

animal crossing scenario,

suggesting better driver

responsiveness.

Overall In-

sight

VMS, particularly

𝑉𝑀𝑆1, enhance

driver caution and

responsiveness in

high-risk animal

crossing zones.

VMS enhance road

safety by prompting

drivers to slow down

in the approach win-

dow, but no signific-

ant impact on other

behaviours.

VMS are valuable for

managing high-risk

areas, improving driver

caution and responsive-

ness. Messages likely

raise awareness, contrib-

uting to safety benefits

even when animals do

not cross the road.

Table 5.11.: The comparison summary of the two messaging strategies in animal crossing and walking scen-

arios.

Section 5.5: Results Analysis 164



6
Field Trial (USYD)

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2.1 System Installation . . . . . . . . . . . . . . . . . . . 167
6.2.2 Collection Locations . . . . . . . . . . . . . . . . . . . 168

6.3 On-Road Trial . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4 Data Extraction and Usage . . . . . . . . . . . . . . . . . . . 175

6.4.1 Selective Data Extraction and Iterative Model Update . . . . . 175
6.4.2 Selective Data Extraction for Manual Inspection . . . . . . . 177

6.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.5.1 Solar Power Issue. . . . . . . . . . . . . . . . . . . . 177
6.5.2 Sensor Occlusion . . . . . . . . . . . . . . . . . . . . 179
6.5.3 Weather Influence . . . . . . . . . . . . . . . . . . . 180
6.5.4 Sensor Angle Shift . . . . . . . . . . . . . . . . . . . 181

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 183

165



6.1. Introduction

This chapter provides details about the field trial of the developed LAARMA system in FNQ.

This study was approved by USYD Animal Ethics Committee (project number: 2023/2398).

The chapter begins with an introduction of the two data collection locations and a summary

of the findings from the collected data in Section 6.2. This is followed by detailed information

about the on-road trial in Section 6.3. Importantly, Section 6.4 explains the data extraction

processes and data usage for model training, serving as a bridge between field data collection

and self-training machine learning. Section 6.5 summarises the challenges faced and the

technological lessons learnt during the data collection and the on-road trial. Lastly, the

conclusions are drawn with recommendations provided in Section 6.6.

6.2. Data Collection

The developed animal detection system was set up at two sites for data collection in Kuranda,

QLD, before the on-road trial commenced. The collected data include RGB images, thermal

images, and LiDAR point clouds. Field data collection is essential for training a machine

learning model that works well for animal detection in a particular environment. For this

Kuranda field trial, a total of 97 days’ worth of data has been collected from two locations

for model training. After multiple iterations of updates, the performance of the trained model

has improved significantly before it was deployed for the on-road trial.

The timeline of important activities during the data collection stage is listed in Table 6.1.

Note that the VMS did not show any message during the data collection stage.

Date Range Activity Location

24 January 2024 Field Installation A

24 January 2024 - 6 March 2024 Data Collection A

6 March 2024 System Relocation B

6 March 2024 - 30 April 2024 Data Collection, Model Training B

Table 6.1.: Timeline of activities during the field data collection.
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6.2.1 System Installation

(a) (b)

(c) (d)

Figure 6.1.: Installation of the animal detection system onto the VMS trailer and its deployment in the field

are shown. (a) shows the VMS trailer in the field with the detection system installed. In (b), the

VMS trailer is being set up in the field. (c) takes a closer look at the sensor head of the detection

system installed onto the pole of the VMS trailer. Its components, from top to bottom, include: a

black cap housing WiFi, GPS, and 4G antennas for communication; a white electrical junction box;

an aluminium enclosure for the thermal camera; two RGB cameras (the left being the medium-

angle camera and the right, the telephoto camera); and the solid-state LiDAR. (d) shows the edge

computing and networking devices, as well as cabling in the control box. From left to right: the

NVIDIA Orin computing unit; the QNAP network switch; and the Teltonika router.

The developed animal detection system was installed onto a VMS trailer with technical

assistance from RoadTek. The sensor head was mounted on the mast of the trailer, at the

back of the display board, as depicted in Figure 6.1c, while the network equipment and the

edge computing components were installed in the white control box of the trailer, as Figure

6.1d shows. The system draws 12V DC power from the trailer’s solar power system. After

installation, the trailer was towed to the field for data collection and the subsequent on-road
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trial, as Figure 6.1a and Figure 6.1a illustrate. Note that, at the time of installation, the signal

connection between the animal detection system and the VMS was not complete. However,

this was resolved before the on-road trial began, as explained in Chapter 6.3.

6.2.2 Collection Locations

Figure 6.2.: The Google Earth image showing the bird’s eye view of the field trial site in Kuranda, QLD. It

highlights two locations, A and B, for the field data collection. The yellow polygon marks the

frequent crossing area for cassowaries according to the field-collected data.

The system was first set up at Location A in late January 2024, as illustrated in Figure

6.1b and also in Figure 6.2, for the initial stage of field data collection. This is also the pilot

stage where the actual cassowary crossing area is identified to provide insights for location

optimisation.

Although there was no visual detection model trained for cassowary detection available

at the beginning of the data collection stage, an instance of the YOLOv8 model pre-trained

on the popular COCO dataset was running continuously for each of the four camera image

channels to validate the computational capability of the edge computer in handling the four

image processing pipelines in parallel. An example of the camera images with real-time

detection results is illustrated in Figure 6.3.

There are technical and environmental challenges such as the solar power issue, weather

influence, and the sensor occlusion problem, which are detailed in Section 6.5. The major

limitation for sensing at Location A is the combination of visual occlusion caused by the red

traffic signage and the hilly terrain of the road, and the heavy bias of crossing cases at a far

distance. As Figure 6.4 shows, at a distance of 180 metres and over, the crossing cassowary

Section 6.2: Data Collection 168



Figure 6.3.: A screenshot of the H.265 video recording shows example RGB and thermal camera images from

Location A. Top left: RGB image from the medium-angle camera; Top right: digitally zoomed

RGB image from the medium-angle camera; Bottom left: RGB image from the telephoto camera;

Bottom right: image from the thermal camera. The timestamp of these images is shown at the

bottom. Each image also has the overlay of bounding boxes of detected objects generated by its

corresponding YOLOv8 detection model.

appears at a reasonable size only in the telephoto camera but is too small to be detectable

by the medium-angle and thermal cameras. This causes a lack of range diversity in the

crossing cases for testing the effectiveness of the cameras, which otherwise can cover short-,

mid-, and long-ranges.

The data collected at Location A has helped formulate a guideline for finding a more op-

timal location for the next stage of data collection and the on-road trial. It should balance

different considerations, including the optimal distance to the actual crossing area, minimal

optical occlusion, maximum sunlight exposure, and terrain and safety constraints for deploy-

ing the LAARMA system. After analysing the recorded crossing cases, it was found that the

vast majority of crossing cases occur in the area highlighted by the yellow polygon in Figure

6.2. With the above criteria taken into consideration, a more optimal location was proposed

as the new location for data collection, which is Location B.

The VMS trailer, together with the detection system, was relocated to Location B in early

March 2024. In the meantime, extra solar panels were connected to the VMS trailer’s power

system to alleviate the power issue.

As Figures 6.5 and 6.6 show, Location B has improved visibility of cassowaries crossing
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(a) (b)

(c) (d)

Figure 6.4.: An example of a cassowary crossing case at a distance of 180 metres from Location A. (c) shows the

cassowary on the road in the telephoto camera image. (a), (b), and (d) show the same cassowary

in medium-angle, digital-zoomed, and thermal images, respectively. As the figures illustrate, the

cassowary appears too small to be detectable in (a), (b), and (d).

at different ranges. Data collected at this location are richer in terms of range diversity and

sensor modality, thus contributing more to the training and evaluation of the cassowary

detection models. Also, with the increase in solar power capacity, the system managed to

perform 24-hour continuous recording for most days before the trial commenced. This gave

us an opportunity to monitor the cassowary crossing scenarios at night, if there were any.

Those technical and environmental challenges at Location A still existed at Location B. Some

of them have improved, such as the solar power issue and the sensor occlusion problem.

The sensor angle shift issue, however, remained severe at Location B. Please refer to Section

6.5.4 for details.

During the data collection, several findings related to the cassowary crossing were ob-

served. Please refer to Section 7.2.1 for detailed statistics and data analysis results.
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(a) (b)

(c) (d)

Figure 6.5.: An example of cassowary crossing case with a distance of 45 metres from the Location B. (a),

(b), and (d) show the same cassowary in medium-angle, digital-zoomed, and thermal images,

respectively. Earlier, the cassowary was in the view of the telephoto image. As the figures illustrate,

the cassowary appears a good size to be detectable by YOLOv8 in all images.

6.3. On-Road Trial

The on-road trial started on 30 April 2024 at Location B. The trial required the readiness of

the following four important components:

• A reasonably well-trained animal detection model. After many iterations of training

using the collected field data, the trained detection model has shown excellent per-

formance in the model evaluation. Two examples are provided in Figure 6.7. Despite

still producing false positive detections, the model has the potential to be further im-

proved by fine-tuning parameters and retraining with the false positive data.

• The signal interface between the animal detection system and the VMS for turning on
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(a) (b)

(c) (d)

Figure 6.6.: Another example of cassowary crossing case with a distance of 135 metres from the Location

B. (a), (c), and (d) show the same cassowary in medium-angle, telephoto, and thermal images,

respectively. (b) shows the view from the digital-zoomed image. As the figures illustrate, the

cassowary appears a good size to be detectable by YOLOv8 in the telephoto image.

and off the message display. After a few site visits, RoadTek technicians managed to

connect the digital output of the animal detection system with the VMS’s designated

digital input pin for controlling its message display.

• The developed message content. The QUT team provided message concepts for use

in the on-road trial after the message development, concept testing, evaluation survey

study, and the driving simulator study. The message content was loaded to the VMS,

and the message screen duration was configured before the on-road trial started, as

Figure 6.8 shows.

• The capability of monitoring driver behaviour as a response to the message. The

driver behaviour data are mainly collected from traffic detection sensors, such as the

pneumatic road tubes RoadTek installed at four locations before and after the VMS
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location prior to the on-road trial. Additionally, the data from the cassowary detection

sensors can provide extra sensor modality for analysing driver behaviour.

(a) (b)

Figure 6.7.: Two examples of using a trained model for cassowary detection in image frames from (a) the

telephoto camera and (b) the medium-angle camera.

(a) (b)

Figure 6.8.: The developed two-part message displayed on the VMS for notifying motorists the real-time cas-

sowary detection event. Once triggered, the two parts, shown in (a) and (b), are looping for a

variable period of time depending on how long the detection event persists before the display

turns off.

The programmed logic for the VMS operated as follows:

• When the detector registers a cassowary, the sign is activated immediately, initiating a

countdown of 𝑡 seconds

• If the detector continues to detect the cassowary, the countdown resets to 𝑡 seconds

• The sign deactivates 𝑡 seconds after the last detection
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(a) (b)

Figure 6.9.: A screenshot of the traffic camera recording confirms the VMS turned on as soon as a cassowary

was detected in the scene. (a) shows the original screenshot, and (b) has the important area

zoomed in for better visualisation.

In the field, cassowary detection can be intermittent due to factors such as distance, tem-

porary occlusion by vehicles, or the cassowary moving out of the camera’s FoV. The value

of 𝑡 is a design parameter. A longer 𝑡 smooths out intermittent detections but may keep the

VMS active longer than necessary. A shorter 𝑡 provides a more real-time warning but results

in more frequent sign activations and deactivations. For the on-road trial, 𝑡 was set to 60

seconds.

The recording from a TMR traffic camera monitoring the on-road trial area was used

to check the VMS status in correspondence with the triggering signal from the cassowary

detection system. After checking the first two weeks of the on-road trial, it was found that

in many cases the VMS was working as expected. One such case is shown in Figure 6.9.

However, in the remaining cases, the VMS was not turned on despite the reception of the

triggering signal from the detection system. It was later found that in those missed message

display cases the VMS trailer did not have sufficient power to turn on the sign due to low

battery voltage in the early mornings or on bad weather days. As discussed in detail in

Section 6.5.1, the issue was mitigated after a RoadTek site visit on 14 May 2024, where the

battery was charged up, and the LiDAR was disconnected from the detection system to cut

the power consumption.

Those missed message display cases, if not properly identified, can affect the accuracy

of the driver behaviour analysis. To address this, TMR conducted manual inspection in the

recording from the traffic camera to verify the VMS status for each case.
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6.4. Data Extraction and Usage

There are two data logging schemes implemented in the animal detection system—continuous

data logging and event-triggered data logging—for different purposes.

The continuous logging operates as long as the system is running, providing low frame rate

sensory data for 1) model training, validation, and testing using the proposed self-training

pipeline, and 2) providing ground truth for system evaluation after human inspection. Along

with the low frame rate sensory data, there are lightweight H.265 encoded videos of camera

images for the convenience of previewing scenes of interest in the field without needing to

extract the complete set of logged files from the system, thus saving on 4G data usage and

transmission time. As a comparison, the H.265 video has a size of 1 MB per minute, which is

only 2% of the size (55 MB per minute) of the low frame rate data.

The event-triggered logging provides full frame rate sensory data just before and after the

cassowary detection events. With a size of around 500 MB per minute, the full frame rate

sensory data are primarily for post-analysis of driver behaviour and event playback. They

are not a required part of the self-training pipeline.

All the data are initially stored within the edge computer after being logged. Extracting

the entire set of logged data off the edge computer incurs prohibitively high cost via the

4G network, and is not necessary either. Instead, only a small subset of collected data, for

instance, less than 1.5% for this particular field data collection and trial, are of interest for

training and evaluation purposes. They are selectively transferred to Amazon Web Services

(AWS) through the 4G connection.

6.4.1 Selective Data Extraction and Iterative Model Update

With a detection model running in the system, the process of selective data extraction and

iterative model update is summarised as follows:

• The timestamp of every animal detection event is recorded. The corresponding raw

data files (low and full frame rate data) are first tagged, and uploaded to the AWS cloud

later.

• The raw data files are downloaded, and the low frame rate data are fed into the self-

training pipeline for auto-labelling. The labelled data are then used for model retraining,

validation, and testing.
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• The retrained model is deployed to the detection system, and the above steps repeat.

As one can see, an initial detection model is required to kick off the above iterative process.

There are different ways an initial detection model can be produced:

• The initial model is trained using the pseudo-labelled field data.

• The initial model is trained using only synthetic data. With the field data available after

the first iteration, the model is retrained using the combination of synthetic data and

field data.

Both methods have been experimented with at different points during the data collection

stage. The synthetic data method is more preferable as it can start without the availability of

any field data and requires less manual intervention.

The field data collected during this process contains both true and false positive detection

cases. Both types are useful for model training in the self-training pipeline. Nevertheless, false

negative cases are not captured in this process, as a model is never capable of detecting cases

that it will miss. Arguably, true and false positive cases are considered sufficient for model

training, given that the data amount and diversity are not compromised by the absence of

false negatives. Also, it is recommended to set a low detection threshold for the detection

model during the data collection phase, which brings two benefits: 1) reducing the occurrence

of false negative cases, and 2) exposing more false positive cases, which then contribute to

the model training.

Figure 6.10.: The images illustrate the effectiveness of our pipeline on thermal imagery. Initially pre-trained

on RGB images, the model has successfully adapted to process thermal images.

The iterative update of the trained models resulted in improved detection performance over

time during the field trial. Additionally, we tested the model’s capability to adapt to different
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domains by assessing its performance on thermal images, validating the robustness of our

self-training pipeline across varying data types. Two examples are presented in Figure 6.10.

Detailed evaluation results are presented in Section 7.2.2.

6.4.2 Selective Data Extraction for Manual Inspection

The above process covers both the true positive and false positive cases. However, it won’t

be able to include false negative cases regardless of how well the detection model works.

All types of cases—true and false positive, and false negative cases—are required for sys-

tem performance evaluation. To identify false negative cases, manual inspection of the raw

sensory data is required. The process of selective data extraction for manual inspection is

summarised as follows.

• All of the H.265 videos are automatically uploaded to the AWS cloud. They are then

downloaded for manual inspection, creating a list of animal sightings as ground truth,

along with other scenes of interest.

• Only sensory data of the listed scenes are then uploaded to the AWS cloud. They are

then downloaded and processed to be used for performance evaluation. Optionally,

the data can be added to the training dataset to help model training.

Manual data inspection, admittedly, is a time-consuming and labour-intensive process,

but it is a common way to generate ground truth, and is only required for the purpose of

performance evaluation. Since the H.265 videos are recorded at a rate of 1 frame per second,

skimming through a one-hour long video takes as little as 2 minutes. There is a software tool

developed to facilitate the inspection, with features such as play, pause, next frame, previous

frame, fast forward, fast rewind, zoom in, and zoom out. It also supports a shortcut key to

log the timestamps of interesting events.

6.5. Challenges

6.5.1 Solar Power Issue

Soon after the field data collection started, it was found that the solar power system that

came with the VMS trailer was not capable of continuously powering the VMS itself and the
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attached animal detection system. As soon as the issue emerged, three software measures

were applied to reduce the power consumption in an attempt to mitigate the issue:

• Fine-tune the CPU and GPU clocks on the edge computer, which saves about 7 W during

the daytime.

• Run the detection system with all sensors streaming except for the LiDAR sensor during

the daytime. This saves an unknown amount of power on the LiDAR side, which cannot

be measured remotely.

• Put the detection system into idle mode during the night, i.e., not running the sensor

drivers and detection algorithms. This saves an extra 15 W on the edge computer side

during the night. It should also save some power on the LiDAR side, which cannot be

measured remotely.

Additionally, the VMS trailer’s battery voltage started to be monitored continuously by the

edge computer to help track the power situation over the remaining course of data collection

and throughout the on-road trial. These power-saving measures helped but still couldn’t

prevent the system from running into a situation where power cutouts happened almost

daily during the early hours of the day, with power being restored when the battery voltage

improved around the middle of the morning. This heavily affected data collection during the

power cutout periods, especially the morning sessions.

In the meantime, TMR was sourcing extra solar power for the VMS trailer. On 6 March

2024, when the VMS trailer was relocated from Location A to B, a solar light tower was

connected to the VMS trailer to provide extra solar power. Since then, the power situation

has significantly improved. The detection system managed to operate 24/7 with all sensors

active for most of the days before the trial started. Yet, despite only a few cases of power

cutout happening due to bad weather, the battery voltage stayed on the low side for the

majority of the time. When the battery voltage was found very low, some power-saving

measures were reinstated to preserve energy.

The power issue garnered attention again at the beginning of the on-road trial, mainly for

two reasons. First, the overall power consumption increased in the on-road trial compared

with that during data collection, because the VMS was not yet electrically connected during

the data collection phase. Secondly, it was found that there is a higher voltage requirement

for turning on the VMS than for running the detection system. This causes an issue where the

VMS may not have enough power to turn on when needed due to insufficient battery voltage.

This affected the trial not just in the early morning but also on rainy days or even cloudy
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days. Those existing power-saving measures were exercised but were found insufficient to

improve the battery voltage fast enough. There was a power cutoff event on the night of 9

May 2024, and the power was restored the next morning.

To mitigate this power issue, TMR arranged a site visit on 14 May 2024 to conduct three

tasks:

• Checking the solar charging systems to make sure they work as expected

• Improving the battery voltage by charging it up using a generator

• Disconnecting the power supply of the LiDAR, which saves at least 20 W. Removing the

LiDAR from the sensor suite does not affect the cassowary detection because it was not

the primary sensor for this task. This, however, does pose challenges to the collection

of LiDAR data for the subsequent driver behaviour analysis.

Additionally, a CCTV camera on the VMS trailer was found operating and consuming power.

It was disconnected to save some power. After the site visit, the battery voltage was signi-

ficantly improved, and it was confirmed later by tracking the battery voltage that the overall

power consumption had dropped.

6.5.2 Sensor Occlusion

The detection system faces sensor occlusion issues caused by environmental and traffic

factors when set up at either Location A or Location B. The issue is found particularly severe

at Location A, where the causes of occlusion include the red traffic warning signage, the hilly

terrain, and vehicles on the road. Examples of sensor occlusion are presented in Figure 6.11.

The occlusion brings a detrimental effect on the quality of data collected at the location for

model training and evaluation. Additionally, it poses extra challenges for the trained model

to operate effectively at this location, particularly given the distance of 180 metres and over

from the frequent crossing area.

The occlusion situation has significantly improved since relocating the system to Location

B. As Figure 6.12 shows, the environmental factors, for instance, a traffic pole or the bush, still

exist but are not considered the primary cause, as was the case at Location A. At the new

location, traffic becomes the major factor for sensor occlusion, which causes the system to

detect the cassowary late and delay triggering the VMS in some crossing cases.
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(a) (b) (c)

(d) (e) (f)

Figure 6.11.: Sensor occlusion examples at Location A. (a) - (f) illustrate cases with different severity levels of

sensor occlusion caused by environmental and traffic factors, such as the red warning signage,

the hilly terrain, and vehicles. When the cassowary is crossing from left to right, the occlusion

caused by the warning signage eliminates the advantage of detecting the animal early on, before

it crosses the road. As (d) and (e) show, the partial occlusion caused by the hilly terrain for distant

cassowaries presents challenges for the cassowary detector. Lastly, vehicles on the road also

cause temporary occlusion for the cassowaries, as (c) and (f) illustrate. In (f), a cassowary was

heavily occluded by both the signage and the red car.

The sensor occlusion caused by the traffic can be alleviated by installing the sensor head at

an elevated point on the roadside. For this particular field trial, however, the height of system

installation is constrained by the VMS trailer. Another solution is to install multiple sensor

heads in the field to jointly monitor the crossing area from different perspectives. In this

case, the sensor heads complement one another, reducing the chance of sensor occlusion.

6.5.3 Weather Influence

During the data collection and on-road trial, weather is an important factor influencing the

performance of the detector. In bad weather, as shown in Figure 6.13, the images captured

are blurry and distorted due to raindrops on the camera lenses, posing challenges for the

cassowary detection. There are two potential solutions worth investigating to improve the

system’s robustness against rainy weather and mitigate this issue:

• Adding lens hoods to the cameras to keep the lens free from raindrops
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(a) (b)

Figure 6.12.: Sensor occlusion examples at Location B. In (a), a cassowary was temporarily occluded when it

walked behind a traffic pole and bush. In (b), a cassowary was occluded by the heavy traffic for

more than 10 seconds when crossing the road.

• Fusing RGB imaging with other sensor modalities, such as thermal and LiDAR, as Figures

6.13c and 6.13d demonstrate.

Additionally, sunny weather also poses challenges for detection due to shadows and high

lighting contrast on the road surface or in the bush, which can be misclassified as cassowaries,

causing false positive detections. Two examples are presented in Figure 6.14. To rectify this

issue, the false positive data were collected and incorporated into the model training to reduce

this occurrence of such errors.

6.5.4 Sensor Angle Shift

As mentioned in Section 6.2.1, the sensor head was installed on the mast of the VMS trailer.

Over time, the sensor head was found to slowly shift to the right (i.e., towards the road)

for unclear reasons. Hypotheses include the inherent mechanical properties of the mast,

the sinking of some of the VMS trailer’s legs into the soil, and the influence of the wind.

Figure 6.15 illustrates the angle shift of the telephoto camera over one week. Despite several

corrective efforts by TMR and RoadTek during site visits, the issue has persisted.

This shifting issue has resulted in late detection of cassowaries at distances over 100 m.

When the sensor is pointing at the desired angle, as shown in Figure 6.15a, the system is

capable of detecting the cassowaries on the left roadside, allowing it to provide motorists

with several seconds of warning time before the cassowaries start crossing the road. After

the sensor angle shifts, however, the system cannot detect the crossing cassowaries until
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(a) (b)

(c) (d)

Figure 6.13.: Raindrops on camera lenses during rainy weather cause blurry and distorted images, presenting

challenges for cassowary detection. (a) and (b) present images from the RGB cameras. (c) shows

the thermal image. The LiDAR point cloud from a bird’s-eye view is shown in (d), where the LiDAR

points from the cassowary are clearly visible.

seconds after they have started crossing from left to right, as Figure 6.15b illustrates. This

leads to late detection and delayed triggering of the VMS, compromising the road safety

outcome of the detection system. The angle shift has also caused a few missed detection

cases where cassowaries were on the left roadside, attempting to cross the road. They were

not detected because they were out of the telephoto camera’s field-of-view after the angle

shift.

In addition to manually correcting the sensor angle periodically, a software solution has

been implemented to compensate for the angle shift of the telephoto camera by introducing a

new digitally-zoomed image channel from the wide-angle camera, which aims at the desired

direction. This is considered a temporary solution; having the telephoto camera pointing at

the desired angle is still the preferred approach.
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(a) (b)

Figure 6.14.: The shadows and high lighting contrast in a sunny day can cause false positive detections.

(a) (b)

Figure 6.15.: The sensor angle shift over the period of one week.

6.6. Conclusions

The field trial in FNQ has demonstrated the effectiveness and robustness of the developed

large animal-activated roadside monitoring and alert system in a real-world traffic environ-

ment. The field data collection, on-road trial, and the self-training machine learning pipeline

have provided valuable insights into the system performance and areas for further improve-

ment. Key conclusions from the trial are summarised as follows.

First, the data collection at two locations allowed for the collection of a diverse dataset.

Despite challenges such as sensor occlusion and power issues, the collected data played

an important role in the self-training machine learning pipeline. The on-road trial validated

the system’s capability to detect the cassowaries and trigger alert messages on the VMS for

motorists.
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Besides, the self-training machine learning pipeline, which combines cloud and edge com-

puting technologies, proved to be a robust method for continuous model improvement. The

field trial demonstrated that using synthetic data for initial training and auto-labelling with a

VLM is effective in overcoming the data scarcity problem and improving the model perform-

ance. Quantitative evaluation results are presented and discussed in Chapter 7.
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7.1. Introduction

This chapter provides insights into and outcomes of two essential components of the field trial;

namely, the developed animal detection system, discussed in Section 7.2, and the evaluation

of the LAARMA system’s impact on actual on-road driver behaviour. The latter is covered in

Section 7.3, and is based on the field trial conducted as the final study within the LAARMA

project at a site based in FNQ.

7.2. Animal Detection System Analysis (USYD)

7.2.1 Field Data Analysis

The developed animal detection system was set up at Location A and subsequently relocated

to Location B in Kuranda, QLD. Please refer to Section 6.2.2 for details about these locations.

Compared to Location A, Location B was chosen as a more optimal location for data collection

and the on-road trial. The field data collected from 8 March to 30 June 2024 at Location B

are more complete and of higher quality, and thus are used for analysis in this section.

In this document, a cassowary sighting case is defined as the observation of one or more

cassowaries on the road or either roadside, reported either manually or automatically by

the detection model, in the deployed system’s camera images in the field. Note that in

some sighting cases, the cassowary attempted to cross the road or remained on the roadside

without actually crossing the road. From the road safety perspective, these cases are equally

important to those where the cassowary did cross the road, as the possibility of crossing at

any time exists.

According to the recorded data, there were 287 cassowary sightings over a total 115 days

from 8 March to 30 June 2024, resulting in an average of 2.5 cases per day. The overall

cassowary sightings over these dates are illustrated in Figure 7.1. Note that there was an

interruption in system operation from 17 April to 19 April 2024, causing there to be no data

available for these three days. This was due to an electrician unintentionally leaving the

system power off after a site visit. It is also noteworthy that despite the system running,

there were no sightings for a period of up to two weeks in June, specifically, from 12 June to

23 June 2024, as revealed in Figure 7.1. In addition, out of the total 287 sighting cases, 238

involve a single cassowary, while 49 have two cassowaries sighted in the scene.
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Figure 7.1.: Cassowary sightings distribution over dates. The highest number, 15, was recorded on 11 May 2024.

Note that there is no data available from 17 April to 19 April 2024, during which the system was not

running.

The sightings were obtained by manual inspection of recorded videos before the first de-

tection model was deployed on 22 March 2024. Afterwards, the sightings were first reported

by the detection models, before being manually verified in the recorded videos. Although

the vast majority of sightings were reported by the detection models, manual inspection was

still used as an important measure to identify a few true cases missed out by the model, i.e.,

the false negative (FN) cases. The produced cassowary sighting dataset plays an important

role as the ground truth in subsequent detection model and system performance evaluations.

The dataset also can be used by wildlife conservation community to study cassowary be-

haviours. It should be emphasised that manual data inspection in this project is solely for

performance evaluation purposes. No manual data labelling is required for the developed

self-training machine learning pipeline.

From Figure 7.1, it can be seen that the sightings varied each month from March to June. To

gain more insights into monthly cassowary activities, Figure 7.2 summarises the sightings for

each month over these four months. It is observed that the sightings increased significantly

from March to May, peaking at 166 cases in May, before a steep drop in June. The on-road

trial period covers May and June, which correspond to the busiest and the quietest months,

respectively, among all four months.
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Figure 7.2.: Cassowary sightings from March to June 2024. Note that the figure shows projected results for

March and April, considering that there are 24 days of data collected in March, and there are 3

days in April without data available.
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Figure 7.3.: The histogram of cassowary sightings per day.

Figure 7.3 presents a histogram showing the distribution of cassowary sightings per day.

This histogram suggests that while there are many days with no sightings at all, a small

number of sightings per day is quite common, and very high numbers of sightings per day

are rare. Specifically, the number of sightings per day ranges from 0 to 15. Most of the data

fall within the range of 0 to 6 per day. The most frequent number of sightings per day is 0,

with a count of 26 days. There are only 4 days with sightings greater than 10 per day.
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Figure 7.4.: The histogram of cassowary sightings over hours of a day. Note that the number for 6am is under-

reported due to data unavailable for this slot for 14 days in March.

With the timestamps recorded for each sighting case, it is also insightful to analyse which

hours of a day the cassowaries appeared most frequently from the data. As Figure 7.4
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demonstrates, the 4pm and 5pm time slots have the highest numbers of cassowary sightings.

They are followed by the 6am and 7am slots. Note that for the first two weeks after the

relocation in March, the system started running from 7am. This causes the number at 6am

to be under-reported due to the absence of data recorded during the 6am slot for these two

weeks.
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Figure 7.5.: The histogram of ranges for cassowary sightings.

Lastly, the range of the cassowary in the scene was estimated for each sighting case.

The estimated range was obtained from LiDAR data when available, or through RGB images

using salient environment features as references. Based on the range information, Figure 7.5

presents a histogram showing the distribution of sighting ranges from 0 to 200m. The figure

clearly shows that the highest number of sightings, totalling 138 cases, occurred within the

100 to 150m range. In comparison, each of the remaining range groups has approximately

50 cases.

7.2.2 Detection Performance Evaluation

7.2.2.A. Model Evaluation

The field-collected data are split into training data and evaluation data. The training data were

used for training the cassowary detection models. There are in total 10 models trained during

the data collection and on-road trial periods, using data available up to different dates. Most

of the model training work occurred during the data collection period, i.e., March and April,

in preparation for the subsequent on-road trial. For a fair comparison, their performance is

assessed using the same evaluation dataset in this section. The evaluation dataset consists

of two parts:

• The true positive (TP) part contains 4577 images (3127 RGB + 1450 thermal) containing

cassowaries from all cameras over 38 cassowary sighting cases. Specifically, there

are 16 cases from March, 17 from April, 3 from June, and 2 from July. All images are
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labelled with bounding boxes around cassowaries. Each sighting case is labelled with

the estimated range for evaluating the model performance in detecting cassowaries at

different distances. There are 15 cases within the range of 0-100m, and 23 cases within

the 100-200m range.

• The false positive (FP) part contains 11975 images (9166 RGB + 2809 thermal) without

cassowaries from all cameras over 34 FP cases from March to July. There is no range

information for this part because the images do not contain cassowaries.

This evaluation dataset does not include cases from May because all data in May have

been used for training the model M240618. Two metrics are employed to evaluate the model

performance, True Positive Rate (TPR), and False Positive Rate (FPR), which are calculated based

on the number of occurrences of true negatives (TN), FP, FN, and TP. Specifically,

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

According to the above equations, the TPR represents the proportion of images where a

model correctly detects a cassowary out of all the images where cassowaries are actually

present. The FPR, on the other hand, is the proportion of images where a model incorrectly

identifies a cassowary, divided by all images where cassowaries are not present. To put it

simply, TPR measures how well the model correctly detects cassowaries, while FPR measures

how often the model makes mistakes by falsely identifying something else as a cassowary.

A perfect model would achieve a TPR of 100% and an FPR of zero.

The TPR evaluation results for the trained detection models are presented in Table 7.1. To

evaluate the performance of models intended for field deployment, we focus on how each

model performs in individual sighting cases. Therefore, the TPR is first calculated for each

of the 38 sighting cases in the evaluation dataset. These case-specific TPR values are then

averaged for all cases within each range group to obtain the mean TPR, thus mitigating the

bias from cases containing more images than others. The FPR results are calculated based

on all RGB images contained in the FP part of the evaluation dataset.

Generally, given a model, both TPR and FPR vary depending on the confidence threshold

used during the model inference. A lower confidence threshold results in a higher TPR, but

the FPR increases in the meantime. A higher FPR causes lower precision of the model in

detecting targets. Thus, instead of using a fixed confidence threshold across all models, an
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Model Name Mean TPR (0-100m) Mean TPR (100-200m) FPR

M240206 4.2% 2.6% 0.37%

M240318 19.4% 10.6% 0.39%

M240320 32.3% 6.9% 0.37%

M240326 45.3% 14.7% 0.38%

M240331 45.8% 6.4% 0.39%

M240408 54.5% 17.1% 0.37%

M240410 53.6% 11.8% 0.38%

M240417 71.3% 25.7% 0.37%

M240426 73.7% 29.9% 0.35%

M240618 78.5% 30.0% 0.37%

Table 7.1.: The evaluation results of 10 trained detection models. The models are listed following a chronological

order of their dates of training. For each model, the TPR results are first calculated for RGB frames in

every sighting case in the evaluation dataset, and then averaged over all cases in each range group.

The FPR results are calculated based on all RGB frames combined in the FP part of the dataset.

FPR cut-off threshold of 0.4% is employed to ensure that all the models are evaluated fairly.

This approach is essentially to ask the question, “What is the best TPR a model can achieve

without exceeding an given FPR limit?”

The mean TPR results in Table 7.1 show a clear trend that models trained at a later date

have higher mean TPR values, primarily because of more field data used for training. Also,

as expected, the mean TPR for the 0-100m range is higher than that for the 100-200m range

across all models due to the closer distance. The worst performing model is the earliest

one, M240206, which was trained using synthetic data only. The best-performing models

are M240426 and M240618. The model M240426, trained with data collected in March

and April, was used throughout the on-road trial period. Compared with earlier models, the

model M240618 was trained with the largest dataset, spanning from March to early June.

It achieves the highest mean TPR in both the 0-100m and 100-200m ranges. However, this

model was not deployed in the field as it was close to the end of on-road trial. Nevertheless,

its results are significant in validating the developed self-training machine learning pipeline.

In addition, a collection of Receiver Operating Characteristic (ROC) curves are presented

in Figure 7.6 to summarise the performance for different models and ranges. A curve that
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(a) 0-100m (b) 100-200m

Figure 7.6.: Receiver Operating Characteristic (ROC) curves for different models and ranges on RGB images.

A curve closer to the top left corner indicates better performance, characterised by a higher TPR

and lower FPR.

bows towards the top left corner indicates better performance, as it shows a high TPR and

low FPR. It is clearly seen that the overall performance of the models M240618, M240426,

and M240417 are close, and are significantly better than that of others.

It is important to note that both TPR and FPR results in Table 7.1 and Figure 7.6 are obtained

based on this specific evaluation dataset. The model’s FPR in this context does not directly

translate to the actual system’s FPR when operating in the field. There are other factors

influencing the system-level performance. For instance, a Bayesian filter is employed after

the image detection to filter out spikes in FP detections. This is the main reason we present

the system-level performance results in Section 7.2.3 in addition to the model performance

results.

7.2.2.B. Sensor Modality Evaluation

RGB Cameras

More in-depth and comprehensive evaluation results of the trained models are presented

in Table 7.2, for different cameras and ranges. From Table 7.2, it is clearly seen that overall

the best performing models are M240618 and M240426, aligned with the conclusion from

the model evaluation section.

The performance of different RGB cameras varies significantly across different ranges. First,

it is evident that each camera performs better in the 0-100m range than in the 100-200m
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Model Name
Medium-Angle Cam Digital-Zoomed Cam Telephoto Cam

0-100m 100-200m 0-100m 100-200m 0-100m 100-200m

M240206 9.4% 0% 0.5% 2.2% 0% 8.2%

M240318 19.9% 0% 25.9% 5.8% 10.6% 20.3%

M240320 23.2% 0% 45.2% 6.9% 31.7% 19.9%

M240326 40.8% 0% 48.3% 18.2% 49.1% 35.7%

M240331 30.9% 0% 57.5% 5.9% 56.1% 19.5%

M240408 48.3% 0.1% 63.0% 22.1% 54.6% 39.6%

M240410 44.9% 0.1% 62.6% 11.3% 57.2% 35.3%

M240417 62.3% 0.9% 77.5% 36.1% 78.6% 52.1%

M240426 67.8% 2.0% 77.3% 43.5% 79.0% 56.1%

M240618 69.4% 2.2% 84.5% 44.6% 86.5% 53.9%

Table 7.2.: The mean TPR results for different RGB cameras, models, and ranges.

range, which is expected due to a higher pixel density of cassowaries at closer distances.

The medium-angle camera, in particular, only performs well for the 0-100m range.

When comparing the cameras across both the 0-100m and 100-200m ranges, the tele-

photo camera performs the best, followed by the digital-zoomed camera and the medium-

angle camera. The superior performance of the telephoto camera is attributed to its narrower

FoV compared to the other two, which concentrates more pixels on the target.

In the 0-100m range, the performance of the telephoto camera is only slightly better than

that of the digital-zoomed camera. However, at the 100-200m range, the telephoto camera

outperforms the digital-zoomed camera by a larger margin. It also has the potential of

using lenses with even higher optical zoom, making it more suitable for scenarios requiring

longer range detection. However, its narrower FoV results in a shorter detection window for

cassowaries within its view. Covering a wider crossing area in the field would require the use

of multiple telephoto cameras, leading to a higher hardware cost.

The digital-zoomed camera, which operates as a virtual camera by cropping images from

the medium-angle camera, offers flexibility in changing direction digitally and can have mul-

tiple instances covering a wider area without additional hardware costs, despite its inferior

performance to that of the telephoto camera. However, its digital zooming capability is con-
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Camera

Type

Pros Cons Recommended

Use Case

Medium-

Angle Cam

Wider FoV for a longer de-

tection window

Degraded perform-

ance for longer ranges

Shorter-range an-

imal detection

Digital-

Zoomed Cam

Flexible angle and FoV

without extra cost on top of

the medium-angle cam

Zooming capability

constrained by cam-

era’s native resolution

Mid-range animal

detection

Telephoto

Cam

Good detection perform-

ance over longer ranges

Narrower FoV causing

a shorter detection

window, and a higher

cost to cover a wide

monitoring area

Longer-range an-

imal detection

Table 7.3.: Comparison of different RGB camera types.

Model Name Mean TPR (0-100m) Mean TPR (100-200m) FPR

TM240520 15.8% 0% 0.46%

TM240523 34.9% 0% 0.46%

TM240626 44.5% 0% 0.49%

Table 7.4.: The evaluation results of 3 trained detection models for thermal imaging. The models are listed

following a chronological order of their dates of training. For each model, the TPR results are first

calculated for thermal frames in every sighting case in the evaluation dataset, and then averaged

over all cases in each range group. The FPR results are calculated based on all thermal frames

combined in the FP part of the dataset.

strained by the native resolution of the medium-angle camera, limiting its maximum detection

range.

Lastly, the strengths and limitations of different RGB cameras as per the above discussion

are summarised in Table 7.3. It provides a general guideline for choosing the suitable sensor

configuration when deploying the system at a new animal crossing site.

Thermal Camera and LiDAR

There are three thermal models trained for detecting cassowaries on thermal images. Their

performance evaluation results are presented in Table 7.4 and also compared in Figure 7.7.

In Table 7.4, an FPR cut-off threshold of 0.5% is employed to ensure a fair comparison. As
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(a) 0-100m (b) 100-200m

Figure 7.7.: ROC curves for the thermal camera over different models and ranges.

the results show, the model TM240626 is the top-performing model among all three models.

However, all the models can only detect cassowaries within the 0-100m range. This is due

to the low resolution of the particular thermal camera model used in the project. While

the thermal camera excels in showing warm-blooded animal activities than RGB cameras,

in particular under low light and nighttime conditions, it lacks the pixel density required

for animal classification tasks beyond 100m, and it has a higher cost compared with RGB

cameras. In the future work, other sensing strategies, such as dynamic object tracking, could

be considered to improve thermal camera’s performance at longer ranges.

The sensor suite of the detection system also includes a solid-state LiDAR. With a horizontal

FoV as narrow as 15◦, this LiDAR can produce denser point clouds on animals compared with

mechanically scanning LiDARs that distribute their points over 360◦. However, there are two

technical challenges in using this LiDAR for animal detection during the field trial. The first

one is that attributed to its narrow FoV, the LiDAR suffered from the same sensor angle shift

issue observed with the telephoto camera, as detailed in Section 6.5.4. The issue prevented

the LiDAR from pointing at the optimal angle for detecting cassowaries. The second one is

related to the solar power, as discussed in Section 6.5.1 in the Field Trial report. The LiDAR

was disconnected from the system on 14 May 2024 to conserve power for the rest of the

system. Due to these challenges, the potential use of LiDAR data for cassowary detection

has not been well investigated in this project. Despite these difficulties, there are LiDAR data

recorded during part of the field trial period, which can be used for analysing interactions

between vehicles and cassowaries.
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7.2.3 System Evaluation

The model evaluation results discussed in Section 7.2.2 do not fully reflect the overall detec-

tion system performance. The system’s detection events are initiated by the event-triggering

pipeline running on the edge computer, which aggregates the Bayesian-filtered results from

multiple instances of YOLOv8 object detector across different cameras. Therefore, the per-

formance of the detection system based on the model M240426 is evaluated based on

detection events recorded during the on-road trial, spanning from 30 April to 30 June 2024.

Over the 62 days of trial period, a total of 259 events were reported by the detection

system. Each event has been checked against the ground truth data, as described in Section

7.2.1, to classify them as TP, FN, and FP detection events. The distribution of different types

of detection events over the trial dates is presented in Figure 7.8. The total and average

numbers for each event type are summarised in Table 7.5, which highlights that the system

missed as few as 6 cassowary cases during the trial period. These FN events were identified

through manual inspection of the recorded data. It is found that 4 of them were caused by

the sensor angle shift issue of the telephoto camera.

Precision and recall are employed as the performance metrics for the detection system

evaluation, calculated as

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Based on the summarised events, the precision and recall for the system during the on-

road trial are 0.77 and 0.97, respectively. This means 77% of the events the system triggered

involved cassowaries, and the system accurately triggered for 97% of the events where

cassowaries were present. The exceptionally high recall demonstrates the system’s high

sensitivity in detecting cassowaries crossing the road or on the roadsides, a critical aspect

for road safety-related use cases.

As Table 7.5 also presents, the system reported on average less than one FP event per

day. This level of average FP result is reasonable, considering that the deployed detection

model examines 1.4 million RGB images from 6am to 7pm each day.

A histogram of the FP events per day is presented in Figure 7.9. It is demonstrated that

the vast majority of days have three or fewer FP events per day. There are only two days
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Figure 7.8.: The distribution of cassowary detection events over dates.

TP FN FP

Total 194 6 59

Average (per day) 3.13 0.10 0.95

Table 7.5.: A summary of detection events during the 62-day on-road trial.

with four FP events, and one day each with five and six FP events. The causes of the FP

events primarily fall into a few categories, including vehicles, persons, vegetation, animals,

and shadow. Many FP events were caused by the same objects over a short period of time.

A summary of how many cases for each type of causes are illustrated in Figure 7.10.
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Figure 7.9.: The histogram of FP events per day during the on-road trial.

The occurrence of FP events can be reduced by incorporating similar FP cases into the

model training. For instance, the model M240618 was trained using a dataset containing

more recent data compared to the model used during the on-road trial period and has

shown improved overall performance, as discussed in Section 7.2.2.
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Figure 7.10.: The pie chart of different categories of FP causes. Vehicles, persons, and vegetation are the three

most common causes.

7.2.4 Conclusions

The developed animal detection system demonstrated effective performance in detecting

cassowaries at Location B in Kuranda, Queensland. The field data collected from 8 March

to 30 June 2024 provided valuable insights into cassowary activities from month to month.

The on-road trial, spanning 62 days from 30 April to 30 June 2024, validated the system’s

high sensitivity and reasonable precision in detecting cassowaries, with an impressive recall

of 0.97. Despite some false positive events, the system’s overall performance was robust,

providing a reliable tool for monitoring animals and enhancing road safety in areas with AVCs

hazards.

7.3. Driver Behaviour Analysis (QUT)

As noted in Chapter 5, while the simulator study represented the first of two studies to evaluate

behavioural responses to messaging triggered on the VMS via the LAARMA system, the on-

road field trial comprised the second of these two studies. This section first outlines the site-

related information and nature of the data collection (via pneumatic road tubes) of motorists’

behaviour in the field trial area.
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RGB Cam
Thermal Cam

Variable Message Sign

Site 3

Edge Computer

West
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Site 1 Site 2 Site 4

Figure 7.11.: Layout of the vehicle speed monitoring sites with VMS and animal detection technologies. The dia-

gram shows the eastward direction of travel, with vehicle speed sensors located at four sequential

sites leading up to an animal crossing zone. The figure is for illustrative purposes only.

7.3.1 Site Information

Figures 7.11 and 7.12 show the four vehicle speed monitoring sites in the trial area. Note

that Figure 7.11 is only for illustrative purposes. The GPS coordinates of the four sites were

recorded during the pneumatic tubes installation. Table 7.6 summarises the site locations and

the distances between these sites calculated using Google Earth Pro.

Vehicle Speed
Monitoring Site 1

Site 2

Site 3

Site 4

57m

107m

162m

Figure 7.12.: Aerial view of the study segment along Kennedy Hwy, showing the four measurement sites (Site

1 to Site 4) with distances between each site labelled to facilitate speed and acceleration analysis

in this study.
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Site GPS Coordinates Distance (in metres) to next site

Site 1 16°48’57.9”S 145°38’32.5”E 57

Site 2 16°48’58.8”S 145°38’34.2”E 107

Site 3 16°49’01.2”S 145°38’36.8”E 162

Site 4 16°49’04.1”S 145°38’41.4”E N/A

Table 7.6.: Geographic coordinates and distances in metres between measurement sites along Kennedy Hwy

for traffic data analysis.

7.3.2 Traffic Data Cleaning

Figure 7.13 displays a portion of traffic data recorded at Site 3, captured in a tabular format

with various traffic parameters. Columns include identifiers like DS, TrigNum, and Ht, along

with temporal data such as Date and Time. Other crucial traffic metrics displayed are Dr

(Direction), Speed (km/h), Wb (tonne), Hdwy (sec), and Gap (sec). Notably, Figure 7.13 reveals

instances of duplicate entries and potential errors, indicated by the recurrence of identical

Speed and Wb values across different rows, alongside conflicting direction indicators (‘W0’

vs ‘E1’) for the same vehicle. These duplicate entries consistently show zero values for Gap

and Headway, suggesting data inaccuracies or system misreadings. To improve data quality

and accuracy, all rows with zero values in both Gap and Headway columns were removed,

streamlining the dataset for more reliable analysis and interpretation.

Figure 7.13.: Table displaying traffic data collected at Site 3, highlighting vehicle direction, speed, and spacing

discrepancies. Rows with zero values for both Gap and Headway, indicative of data errors, were

identified for removal to ensure data integrity. Note: WSite4, WSite3, WSite2 and WSite1 in the

table are renamed to Site 1, Site 2, Site 3, and Site 4, respectively, in the data analysis.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) Site 4

Figure 7.14.: Histograms depicting the distribution of vehicle speeds at four sites. Each panel represents the

frequency of observed speeds at a particular site, with Sites 1 through 4 showing distinct patterns

in speed variability and central tendencies.

7.3.3 Traffic Statistics

The analysis presented in this section uses data collected across four sites from 2 April 2024

to 10 April 2024, inclusive. This data pertains exclusively to eastbound traffic, which is the

direction targeted by the LAARMA intervention. It is important to note that the traffic data were

collected prior to the on-road trial of the LAARMA system, which started on 30 April 2024.

During this data collection period, the VMS was inactive (i.e., not displaying any messages).

Therefore, the analysis results are intended to provide insights into regular traffic conditions

in the field trial area, without the influence of the LAARMA system.

7.3.3.A. Speed Distributions

Figure 7.14 illustrates the distribution of vehicle speeds across the four sites. Sites 1 and 2

show greater variability in speeds, as indicated by their higher standard deviations, com-

pared to Sites 3 and 4. Specifically, Site 2 has the highest standard deviation of 7.35 km/h,

while Site 1 also demonstrates significant speed variation. In contrast, Sites 3 and 4 exhibit

more consistent speeds, with lower standard deviations, suggesting less fluctuation in vehicle

speeds at these locations.
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Figure 7.15.: Comparative analysis of speed metrics across four sites (from the event’s end to the approach’s

start). This collection of bar charts illustrates the mean, standard deviation, minimum, maximum,

25th percentile, median, 75th percentile, and interquartile range (IQR) of vehicle speeds recorded

at each site. The colours consistently represent each site across all statistics, facilitating a clear

visual comparison of speed dynamics and variability.

7.3.3.B. Summary Statistics

Speed Summary Statistics

As Figure 7.15 illustrates, the mean speed across the four sites shows modest variation, with

Site 4 exhibiting the highest mean speed at approximately 61.85 km/h and Site 3 displaying

the lowest at 56.79 km/h. This suggests that traffic flow at Site 4 is typically faster, possibly

due to road characteristics. The standard deviation values, which measure speed variability,

range from 6.30 km/h at Site 4 to 7.35 km/h at Site 2, indicating more consistent speeds at

Site 4 and slightly more varied speeds at Site 2. The maximum speeds recorded across the

four sites suggest instances of extreme speeding, particularly at Site 4.

The interquartile range (IQR) is used to measure statistical dispersion, highlighting the

spread or variability within the collected data. Specifically, the IQR represents the range

between the third quartile (Q3) and the first quartile (Q1), capturing the middle 50% of the

speed values. Here, IQR is fairly consistent across the sites, from 6.28 km/h at Site 4 to

7.70 km/h at Site 2, pointing to a similar distribution of speed between the lower and upper

quartiles across the different locations.

Headway Summary Statistics
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Figure 7.16.: Comparative analysis of headway metrics across four sites (from the event’s end to the approach’s

start). This collection of bar charts illustrates the mean, standard deviation, minimum, maximum,

25th percentile, median, 75th percentile, and IQR of vehicle speeds recorded at each site. The

colours consistently represent each site across all statistics, facilitating a clear visual comparison

of speed dynamics and variability at each site.

As shown in Figure 7.16, the mean headway across the sites is relatively stable, with the

values ranging from 20.38 seconds at Site 2 to 21.78 seconds at Site 1, indicating uniform

traffic density conditions across these locations. Despite this consistency in the mean distance,

the standard deviation of headway shows high variability, ranging from 223.54 seconds at

Site 1 to 235.26 seconds at Site 4, which suggests fluctuating vehicle distances that might

reflect varying traffic conditions or times of data collection.

Maximum headway values are exceedingly high across all sites, with values exceeding

24082 seconds, indicating the presence of unusually large gaps between vehicles at times,

likely during low-traffic periods. The IQR for headway shows minimal variation from 13

seconds at Site 4 to 15.6 seconds at Site 1, which further signifies a consistent distribution of

mid-range vehicle spacing across different traffic environments. Note that a smaller IQR indic-

ates less variability or more consistency in the headway values, meaning vehicles maintain

more uniform spacing, while a larger IQR suggests greater variation in the headways.

The minimum values of headway, particularly those less than 1 second, could be erroneous

given that some instances could be where a vehicle was towing a trailer, for example.
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Site Site 1 Site 2 Site 3 Site 4

Hour Mean Speed Mean Headway Mean Speed Mean Headway Mean Speed Mean Headway Mean Speed Mean Headway

0 57.58 2689.65 60.71 2689.57 59.69 2689.35 70.47 2279.41

1 58.83 2420.03 61.88 2296.14 59.91 2296.14 66.06 4487.2

2 57.87 1992.21 59.28 1992.12 58.04 2010.22 66.65 1937.15

3 54.98 1340.69 58.35 1381.15 57.6 1424.07 66.09 1077.35

4 64.77 69.47 65.39 69.19 63.29 68.89 67.91 65.81

5 65.96 35.50 65.95 35.35 63.61 35.62 67.12 30.93

6 61.71 15.27 60.94 15.29 58.42 15.29 62.36 13.82

7 60.46 11.89 59.93 11.92 57.57 11.93 61.81 11.78

8 58.70 11.73 58.64 11.73 56.63 11.81 61.55 11.07

9 58.10 11.15 58.08 11.19 56.21 11.22 60.87 10.11

10 57.80 12.09 57.69 12.12 55.74 12.26 60.79 11.1

11 57.45 11.98 57.73 11.99 55.82 12.14 61.02 11.31

12 57.42 12.26 57.49 12.31 55.93 12.39 61.01 11.62

13 57.22 12.35 57.22 12.36 55.63 12.43 60.59 12.17

14 57.34 11.57 57.30 11.59 55.62 11.67 60.75 11.34

15 57.93 10.68 57.75 10.72 55.73 10.76 61.14 10.65

16 59.36 11.95 58.88 11.94 56.49 11.98 62.05 11.34

17 60.43 16.74 59.87 16.74 57.48 16.8 62.17 15.73

18 62.36 28.23 61.90 28.18 59.51 28.3 63.82 26.82

19 64.71 47.43 64.89 47.31 62.71 47.32 66.63 44.14

20 63.78 72.50 64.51 71.92 62.63 71.9 68.03 74.85

21 61.83 309.06 62.98 310.34 61.29 309.79 68.84 258.91

22 63.21 470.70 64.08 470.66 62.26 470.87 67.68 493.47

23 62.17 794.13 62.92 787.55 60.89 794.65 67.61 714.21

Table 7.7.: Mean speed and headway by hour of the day from the four sites.

7.3.3.C. Time of the Day Analysis

Based on the Table 7.7, for the mean speed and headway at different hours of the day across

four sites, we can derive some insights into traffic patterns specific to each location.

Analysis of Mean Speed Variation Across Hours and Sites

Figure 7.17 presents the variation of the mean speed across hours and sites. Specifically,

Site 1: Shows a dip in speeds during the early morning (3 AM) and afternoon, with a

gradual rise in speed later in the evening, reflecting typical traffic slowdowns during rush

hours and increased speeds during off-peak times.

Site 2: Demonstrates a similar pattern to Site 1, with the same drop in speeds during

midday and an increase in the evening, consistent with lighter traffic in the later hours.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) Site 4

Figure 7.17.: Boxplots of the speed vs hours of the day at the four sites.

Site 3: Displays moderate speed variations, with lower speeds during the morning and

evening rush hours. The midday period shows a slight increase in speed, although less

pronounced than in the other sites.

Site 4: Stands out from the other sites due to its consistently higher speeds, particularly

during the late evening. Speed fluctuations are evident throughout the day, with the lowest

speeds observed in the early morning, followed by a peak late in the evening, likely due

to reduced traffic density. We should emphasise that Site 4 differs from the other sites due

to the presence of an overtaking lane at its location. Fluctuations in speed are apparent

throughout the day, with the lowest speeds likely during peak hours, hinting at increased

traffic. Conversely, late-night hours record the highest speeds, suggesting reduced traffic

density.

Analysis of Mean Headway Variation Across Hours and Sites

Figure 7.18 shows the variation of headway (seconds) vs. hour of the day at the four

study sites. For all sites, the headway is shortest during peak hours, reflecting higher traffic
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(a) Site 1 (b) Site 2

(c) Site 3 (d) Site 4

Figure 7.18.: Boxplots of the headway vs hours of the day at the four sites.

density and possibly slower-moving vehicles. The y-axis uses a scale of 104, illustrating the

significantly larger headway values observed during the early morning and late-night hours.

This scale highlights the notable variation in headways at off-peak times, as compared to the

more consistent, lower headway values during daytime hours when traffic is more regular.

7.3.4 Impact of LAARMA on Driver Behaviour and Vehicle Speeds

This study evaluates the effectiveness of the LAARMA system and the messaging it triggers

in improving motorists’ behaviour and, ultimately, enhancing road safety through efforts

to reduce AVCs. The on-road trial setup is presented in Figure 7.19, where the approach

zone and event zone for the driver behaviour analysis are labelled. Specifically, we explore

whether purpose-devised messaging displayed on the roadside VMS, which are triggered

by the LAARMA system on detection of a cassowary on or near the road, affect drivers’

speeds at designated locations in the field trial area. We hypothesised that vehicle speeds

would decrease at these sites when messages were displayed (and thus triggered by the
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Figure 7.19.: Map of the four vehicle monitoring sites corresponding to the approach zone (i.e., Sites 1 and 2)

and the event zone (i.e., Sites 3 and 4).

LAARMA system) signalling a cassowary had been detected on or near the road. The analysis

presented in this section uses traffic data recorded across the four vehicle speed monitoring

sites from 10 April 2024 to 30 June 2024, inclusive.

7.3.4.A. Methodology

To test our study’s hypothesis, we employed a comprehensive methodology, as presented in

Figure 7.20 using objectively-measured traffic data from pneumatic tubes situated on-road

at four specific sites in the field trial area. The following steps outline our approach:

1. Traffic Data filtering based on the triggers timing: At each of the four sites, we gathered

all available traffic records within a specified time range (from timestamp_from to

timestamp_to).

2. Traffic Data Filtering Based on Direction: As only drivers moving from west to east

could see the message displayed on the VMS, our analysis focused on sites positioned

before and after the VMS. Sites 1 and 2, located before the VMS in the approach zone,

and Sites 3 and 4, situated after the VMS in the event zone, were crucial for capturing

interactions between drivers and animals. We concentrated on eastward traffic (labelled

‘E’) and excluded westward traffic (labelled ‘W’).
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Figure 7.20.: The methodology flow to evaluate the effectiveness of the LAARMA system and the messaging it

triggers in improving motorists’ behaviour.

3. Variable Addition: A new variable, “warning,” was introduced for each traffic record to

indicate whether a message was displayed on the VMS. This variable allowed a more

nuanced analysis based on the type of case and the status of the VMS:

- Category A: True positives (TPs) with an active VMS. Drivers’ reactions would have
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been based on both the message on the VMS and their direct observation of a

cassowary (case_type = TP and sign_status = ON).

- Category B: TPs with an inactive VMS due to disconnection or low power, and false

negatives (FNs). Drivers’ reactions would have been based on their reactions solely

to direct observation of a cassowary (case_type = TP and sign_status = OFF or

NC, or case_type = FN or NA).

- Category C: False positives (FPs) with an active VMS. In this condition, drivers’ re-

actions would involve them having seen a message on the VMS, but no cassowary

would have been encountered (case_type = FP and sign_status = ON).

In our analysis, the ‘warning’ indicator variable was set to one for TP cases where the

VMS was active. For all other scenarios, including FNs and TPs with the sign off, the

‘warning’ variable was set to zero as shown in Eq(1). This stratification helped us assess

the impact of the messaging on the VMS on driving behaviour.

𝑤𝑎𝑟𝑛𝑖𝑛𝑔 =


1 for TP cases and the VMS was active

0 for FNs and TPs with the sign off
𝐸𝑞(1)

4. Traffic Data Filtering Based on Case Type: Traffic records corresponding to a trigger

with case_type = FP are excluded to control for variance due to the absence of actual

animal presence.

5. Data Modelling: We analyse the speed data using a generalised linear model with a

normal distribution, incorporating the newly added variable for warnings.

This methodology tested our hypothesis and also provided insights into how effectively

the LAARMA system is as potentially modifying driver behaviour in the presence of potential

road hazards posed by animals.

7.3.4.B. Analysis Results

In the subsequent subsections, we present results of the analysis of vehicle speeds at four

measurement sites. This analysis explored how variations in speed could be explained

through the use of two key variables: the ‘warning’ variable, which was set to one when

the VMS was active and zero otherwise, and the ‘headway’ variable.
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Approach Zone Sites

Site 1

Table 7.8 provides statistical evaluation of the influence of headway and warning signals on

vehicle speeds. Here, the intercept stands at approximately 56.19 km/h, which represents the

average vehicle speed in the absence of any external influencing factors such as headway

adjustments or warning signals. The impact of the ‘Warning’ variable is notably significant,

demonstrating a reduction in vehicle speed by approximately 4.26 km/h when a warning is

active (p-value <.00001). This substantial decrease provides support for the effectiveness of

messaging on the VMS (as triggered by the LAARMA system) in prompting drivers to reduce

their speed.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 56.19078 0.420474 133.6368 2324 0 55.36624 57.01532

Hdwy 0.048525 0.008961 5.41517 2324 6.75E-08 0.030953 0.066097

Warning -4.26409 0.482921 -8.82979 2324 2.02E-18 -5.21109 -3.31709

Table 7.8.: Model estimates at Site 1.

Conversely, the ‘Hdwy’ (headway) variable is associated with a slight but statistically sig-

nificant increase in speed by about 0.049 km/h for each unit increase in headway (p-value

<.00001). This indicates that drivers tended to accelerate slightly when the distance between

vehicles increased, although the effect is relatively minor compared to the relatively stronger

reduction in speed associated with display of the messaging on the VMS. These findings

provide support for the positive impact of messaging on the VMS (triggered by the LAARMA

system) in influencing driver behaviour under various traffic conditions.

Site 2

The statistical analysis provided in Table 7.9 evaluates the effects of headway and visual

warnings on vehicle speeds. The intercept value at approximately 52.00 km/h indicates the

base speed in scenarios without the influence of messaging on the VMS or adjustments in

headway. Notably, the presence of a message on the VMS was shown to lead to a significant

reduction in drivers’ speed, with a decrease of about 3.44 km/h when the messaging is

displayed (p-value <.00001). This finding thus provides support for the positive impacts of

messaging on the VMS (as triggered by the LAARMA system) on reducing drivers’ speed. On

the other hand, the ‘Hdwy’ variable, which represents the distance between vehicles, shows
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a small but statistically significant increase in speed by 0.06 km/h for each unit increase

in headway (p-value <.00001). This suggests that drivers tended to slightly increase their

speed when given more space ahead, although the impact is considerably less significant

compared to the relatively stronger reduction in speed associated with display of messaging

on the VMS.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 51.99648 0.487961 106.5587 2371 0 51.03961 52.95336

Hdwy 0.064206 0.010786 5.952591 2371 3.03E-09 0.043055 0.085357

Warning -3.4364 0.568945 -6.03995 2371 1.78E-09 -4.55208 -2.32072

Table 7.9.: Model estimates at Site 2.

Event Zone Sites

Site 3

Table 7.10 presents a detailed statistical analysis of the factors affecting vehicle speeds,

specifically examining the effects of headway and messaging on the VMS. The intercept

of 46.85 km/h indicates the baseline speed when neither headway adjustments nor mes-

saging are considered. The ‘Warning’ variable demonstrates a significant reduction in vehicle

speed, decreasing by approximately 6.18 km/h when warnings are active (p-value <.00001),

highlighting positive effects of the messaging on the VMS in reducing drivers’ speeds and

thus promoting increased caution as approaching a potential hazard. In contrast, the ‘Hdwy’

(headway) variable is associated with a small but statistically significant increase in speed,

approximately 0.06 km/h per unit increase in headway (p-value <.00001). This suggests that

greater headway between vehicles might encourage slightly faster driving, though the effect

is relatively minor compared to the relatively more pronounced positive effects relating to

reductions in vehicle speeds associated with display of messaging on the VMS.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 46.85146 0.54412 86.10503 2258 0 45.78444 47.91849

Hdwy 0.059842 0.011826 5.06007 2258 4.53E-07 0.03665 0.083033

Warning -6.1764 0.640332 -9.64562 2258 1.33E-21 -7.4321 -4.9207

Table 7.10.: Model estimates at Site 3.
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Site 4

The analysis of vehicle speed in relation to the activation of messaging on the VMS and

headway distance at Site 4 is shown in Table 7.11. The coefficient for the intercept indic-

ates that the baseline speed, without the influence of messaging or varying headway, is

approximately 54.70 km/h. Notably, the ‘Warning’ variable shows a significant decrease in

vehicle speed by about 4.75 km/h when messaging is displayed on the VMS (p-value <

0.00001), thus, providing support for the positive impacts of messaging on the VMS in redu-

cing drivers’ speeds. Conversely, the ‘Hdwy’ (headway) variable, representing the distance

between vehicles, has an estimated coefficient that suggests a negligible effect on speed

(a decrease of 0.00168 km/h per unit increase in headway), with a non-significant p-value

(0.802), indicating that headway, within the range observed, does not substantially influence

vehicle speed under the conditions studied.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 54.69558 0.346466 157.8671 2119 0 54.01613 55.37503

Hdwy -0.00168 0.006727 -0.25026 2119 0.802414 -0.01488 0.011508

Warning -4.74912 0.412546 -11.5117 2119 8.68E-30 -5.55815 -3.94008

Table 7.11.: Model estimates at Site 4.

Refining Traffic Data Analysis at Event Sites: Adjusting Trigger Timings to Mitigate

Noise in Treatment Group Observations

The analysis for Site 3 and Site 4 contains potential noise due to the methodology em-

ployed in filtering traffic data based on trigger timing. At the event sites, Site 3 and 4 often

include vehicle traffic that is coincidental with the onset of triggers. This inclusion can result

in ‘noise’ within the treatment group data, where it is assumed that drivers observe the mes-

saging on the VMS. However, in reality, the VMS may activate their messaging only after the

vehicles have passed, meaning that drivers do not actually see the messaging. To mitigate

this issue and enhance the accuracy of our analysis, we adjusted the timing of our data

filtering at these sites. Specifically, we shifted the start and end times of the triggers by 32

seconds for Site 4 and 16 seconds for Site 3. These adjustments correspond to the estimated

travel times from Site 2 to Sites 4 and 3, respectively. This strategy aimed to increase the

likelihood that the vehicles included in the filtered data at Sites 3 and 4 have actually seen

the messaging on the VMS, thereby reducing the noise in the analysis and improving the

reliability of our findings.
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The adjustment of trigger timings at Sites 3 and 4 yielded distinct changes in the analysis

results, highlighting the impact of more accurate data filtering techniques. After adjusting the

triggering times to account for the actual visibility of the messaging on the VMS to drivers,

the results demonstrated a more pronounced effect of the messaging on reducing vehicle

speeds at both sites compared to the unadjusted data.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 46.46724 0.552268 84.13894 2255 0 45.38424 47.55025

Hdwy 0.063821 0.012282 5.196248 2255 2.22E-07 0.039735 0.087906

Warning -6.29849 0.645047 -9.7644 2255 4.35E-22 -7.56344 -5.03355

Table 7.12.: Model estimates at Site 3 after adjusting the triggering times at the location of the Site 3.

At Site 3, the adjusted analysis results in Table 7.12 indicate a stronger effect of the mes-

saging on the VMS on reducing driver’ speeds, with the coefficient for the warning increasing

from -6.176 to -6.298. This result is supported by a very low p-value, reinforcing the statistical

significance of the VMS messaging’s positive impact on reducing drivers’ speed. Additionally,

the estimate for headway became more positive, and its significance improved, suggesting

that the greater spacing between vehicles might encourage slightly faster driving, yet this

effect appears to have been mitigated by the drivers’ response to the messaging on the VMS

in terms of reductions in speeds.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 54.02682 0.373115 144.7996 2264 0 53.29514 54.75851

Hdwy 0.002918 0.007187 0.405962 2264 0.684809 -0.01118 0.017011

Warning -5.055 0.430614 -11.7391 2264 6.21E-31 -5.89945 -4.21056

Table 7.13.: Model estimates at Site 4 after adjusting the triggering times at the location of the Site 4.

Similarly, at Site 4, the results of the adjusted analysis in Table 7.13 shows that the impact

of the messaging on the VMS on drivers’ speed reduction increased even further, with the

warning coefficient increasing from -4.749 to -5.055. This increase supports there having

been an even more substantial behavioural response when accounting for accurate trigger

exposure. The p-value remains significant, further supporting the positive impact of the

messaging on reducing drivers’ speed, despite a slight increase in the standard error of the
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warning estimate. Notably, the headway parameter changed from slightly negative to slightly

positive, though it remains statistically insignificant, suggesting that headway has a minimal

impact on drivers’ speed at this site.

7.3.5 Crash Reduction Estimation

The calculation of crash reduction rates plays a pivotal role in the safety assessment for the

future deployment of LAARMA. This estimation process is essential for understanding the

potential returns on investment from implementing these technologies at scale. This section

focus on determining the crash reduction rate for LAARMA, utilising the Nilsson power model.

This model, established by Nilsson in 1981, is grounded in the principle that the safety level

of a transport system is intimately linked to its speed levels. According to the model, even

minor adjustments in driving speeds can lead to significant and quantifiable reductions in

crash risks. This model is particularly versatile, capable of estimating the impact on vari-

ous injury severities, such as slight and fatal injuries, across different road types like urban

arterials and freeways.

The Nilsson power model formula is rearranged to calculate the reduction in injuries from

the LAARMA technology is as follows:

𝐶𝑟𝑎𝑠ℎ 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 1 −
(
𝑀𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑𝑉𝑀𝑆−𝑂𝑁

𝑀𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑𝑉𝑀𝑆−𝑂𝐹𝐹

)𝐶
and

𝑀𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑𝑉𝑀𝑆−𝑂𝑁 = 𝛽0(𝑖) + 𝛽𝐻𝑑𝑤𝑦(𝑖) × ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑠 + 𝛽𝑊𝑎𝑟𝑛𝑖𝑛𝑔(𝑖)

𝑀𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑𝑉𝑀𝑆−𝑂𝐹𝐹 = 𝛽0 + 𝛽𝐻𝑑𝑤𝑦 × ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑠

where

𝛽0(𝑖) is the intercept estimated at the study site 𝑖 ∈ {1, 2, 3, 4},

𝛽𝐻𝑑𝑤𝑦(𝑖) is the headway coefficient estimated at the study site 𝑖 ∈ {1, 2, 3, 4},

ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑠 is the observed headway in seconds,

𝛽𝑊𝑎𝑟𝑛𝑖𝑛𝑔(𝑖) is the estimated coefficient of the warning indicator variable at the study site

𝑖 ∈ {1, 2, 3, 4},

𝐶 is is an exponent dependent on the injury severity and location type from [201] described

in Table 7.14.
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Road type considered Fatal

crashes

exponent

Serious in-

jury crashes

exponent

Slight injury

crashes ex-

ponent

All injury

crashes ex-

ponent

Rural roads/freeways 4.1 2.6 1.1 1.6

Urban/residential

roads

2.6 1.5 1.0 1.2

All roads 3.5 2.0 1.0 1.5

Table 7.14.: Exponents applied in Nilsson power model for crash reduction determination.

7.3.5.A. Crash Reduction Results

Figure 7.21 presents the calculated crash reduction factors (CRF) for fatal, serious, slight injuries,

and all injuries combined across four urban/residential road sites using the Nilsson power

model. The respective exponents used are 2.6 for fatal crashes, 1.5 for serious injury crashes,

1.0 for slight injuries, and 1.2 for all injury types, reflecting the expected reduction in crash

severity as speeds decrease.

Figure 7.21.: Crash reduction factors (CRF) by injury severity across the sites: This figure illustrates the effect-

iveness of LAARMA reducing crash severities across four sites. Sites 3 and 4, located in the event

zone, demonstrate higher reductions in crash severities, particularly for fatal and serious injuries,

compared to Sites 1 and 2 in the approach zone. The graph highlights the impact of targeted safety

measures in enhancing road safety and reducing potential injuries and fatalities in high-risk zones.
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7.3.5.B. Analysis by Site and Injury Severity

Fatal CRF: Site 3 shows the highest reduction in fatal crashes, indicating a significant impact

of LAARMA on fatal crash rates, followed closely by Site 4. In contrast, Sites 1 and 2 (approach

zone) demonstrate lower reductions.

Serious Injury CRF: Similar to fatal crashes, Site 3 leads in reducing serious injuries, fol-

lowed by Site 4. The difference between the event zone (Sites 3 and 4) and the approach

zone (Sites 1 and 2) is noticeable but less pronounced than with fatal crashes.

All Injury CRF: Reflecting a mix of severity types, all injury reductions are highest in Site

3 and lowest in Site 1, with Sites 2 and 4 showing intermediate values.

Slight Injury CRF: Similar to that of all injury crash reductions.

The above analysis shows that event zone (Site 3 and Site 4) consistently shows higher

reductions across all injury types, particularly for more severe injuries. This suggests that

LAARMA in these zones are highly effective at reducing speeds sufficiently to impact the

more severe outcomes significantly. The approach zone, while still benefiting from LAARMA,

shows less reductions.

These findings underscore the critical role of LAARMA in specific road zones where animal

crossing to maximise safety benefits, particularly where severe injuries or fatalities are a

concern.

7.3.6 Conclusions

The comprehensive analysis across four distinct sites provided valuable insights into the ef-

fects of messaging on the VMS and headway on vehicle speeds. Overall, the results support

there being positive effects of the LAARMA system and the messaging it triggers on reducing

driver’s speeds. At the event zone sites (Sites 3 and 4), significant reductions in vehicle speeds

were observed when messaging was displayed on the VMS, with decreases of approximately

6.18 km/h and 4.75 km/h, respectively.

With the adjusted data, the observed reductions in vehicle speeds were more pronounced

when messaging was displayed on the VMS, showing decreases of approximately 6.30 km/h

at Site 3 and 5.06 km/h at Site 4. These adjustments from the previously noted reductions of

about 6.18 km/h and 4.75 km/h at these sites, respectively, provide support for the positive
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effects of the LAARMA system and the messaging it triggers on reducing drivers’ speeds in

high-risk zones where AVCs are probable.

At the approach zone sites (Sites 1 and 2), while the VMS still played a significant role in

reducing speeds, the decrease was slightly less pronounced, with reductions of 4.26 km/h

and 3.44 km/h, respectively.

Interestingly, across all sites, headway showed a consistent, albeit minor, influence on

increasing vehicle speeds. These slight increases, ranging from approximately 0.048 to 0.064

km/h per unit of headway, suggest that when headway reaches a value equivalent to the

absence of a leading vehicle, drivers have greater freedom to choose their speed, though this

behaviour may be considered largely mitigated by the positive effect on reducing drivers’

speeds that results from messaging displayed on the VMS.

Using the Nilsson power model, the crash reduction estimation confirms that the LAARMA

system is more effective in the event zone (Sites 3 and 4), where significant reductions in fatal

and serious injuries are observed, compared to the lower reductions seen in the approach

zone (Sites 1 and 2).
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8
Conclusions and Recommendations

In conclusion, the development and implementation of the LAARMA system represent an im-

portant Australian initiative in mitigating AVCs, thereby enhancing road safety and promoting

wildlife conservation. By integrating advanced sensing technologies with cutting-edge ma-

chine learning models together with purpose-devised messaging displayed on a roadside

VMS, this system has demonstrated its capability to detect cassowaries with high accuracy

and robustness in challenging environments in FNQ and issue real-time messaging to alert

motorists to an upcoming hazard. The innovative approach of using a self-training machine

learning pipeline, combined with synthetic data for initial training and auto-labelling through

a VLM, has shown to be effective in overcoming challenges related to data scarcity. This

approach has facilitated continuous model improvement, ensuring that the system remains

responsive and effective across various deployment sites.

Prior to the field trial, purpose-devised messages for display on the roadside VMS were

developed, concept-tested, and evaluated via two studies. The first study comprised a qual-

itative study featuring a series of 8 focus groups with N = 36 drivers to concept-test 20

concepts. The second study, a larger online survey, assessed the effectiveness of 4 of the

messages with a sample of 557 licensed drivers. Overall, the messages assessed in the

survey performed well on the various outcome measures of effectiveness that were imple-

mented in accordance with the SatMDT [1]. Among just some of the key findings highlighted

across these studies was the importance of identifying the type of animal on the signage and

prioritising the “slow down” strategy before the “scan” strategy. Participants also emphasised
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the need for motorists to understand the real-time nature of the messaging and supported

the implementation of broader public education campaigns about the LAARMA system to aid

understanding about the system and how it operates.

Two of the four messages were subsequently tested further with drivers’ behavioural re-

sponses to them evaluated within a driving simulator study. The study comprised two bal-

anced groups of participants for a total of 51 drivers. The findings indicated that the messages

had positive impacts on reducing drivers’ speeds particularly in the approach zone window

on sighting of the message on the VMS. It was thought that the effect was more pronounced

in this approach zone rather than in the event zone in the simulator study given that par-

ticipants were aware that there was no possibility that they would actually collide with a

cassowary in the event zone.

The field trial conducted in FNQ provided valuable insights into the real-world performance

of the LAARMA system. The trial not only validated the system’s ability to detect large animals

like cassowaries, achieving an impressive recall of 0.97, but also identified areas for further

refinement, such as improving power and sensor head designs, and enhancing the system’s

robustness against adverse weather conditions. The analysis of field data also discussed the

strengths and weaknesses of different sensor modalities in detecting cassowaries at different

distances, offering practical guidance for selecting the optimal sensor configuration when

deploying the system at new animal crossing locations.

In addition to the animal detection results, the field traffic data analysis revealed significant

reductions in vehicle speeds in the event zone, with decreases of 6.30 km/h and 5.06 km/h

at Sites 3 and 4, respectively, when messaging was displayed on the VMS (as triggered

by the LAARMA system). The crash reduction analysis further supported this, showing that

LAARMA’s impact is more pronounced in the event zone, where significant reductions in fatal

and serious injuries were observed using the Nilsson power model. Although the speed and

crash reduction was slightly less significant in the approach zone (Sites 1 and 2), the findings

underscore the importance of targeted safety interventions in reducing vehicle speeds and

mitigating AVCs.

Overall, the successful integration of the detection system with purpose-devised messaging

on the roadside VMS highlights the practical applicability of the developed system in real-

world traffic scenarios, offering a proactive approach to alerting motorists and helping to

prevent AVCs.

Looking ahead, future enhancements to the LAARMA system should focus on incorporating

more recent data to further refine the system’s accuracy and reduce false positives. Addition-
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ally, expanding the system’s deployment to other regions will provide further opportunities

to assess its scalability and broader impact on road safety and wildlife conservation.

Lastly, the knowledge gained from the project and the lessons learned from addressing

the environmental and technological challenges during the field trial are of importance for

future real-world implementations. Based on these insights, there are several areas where

future research and development could enhance the system’s effectiveness and reliability:

• Given the solar power issues, exploring higher-capacity solar panels and battery sys-

tem could ensure uninterrupted system operation. Also, further optimisation of power-

saving measures and energy-efficient hardware and software components should be

considered.

• To mitigate sensor occlusion and improve detection accuracy, systematic location op-

timisation should be performed. Besides, installing the sensor head at a more elevated

point, and the deployment of multiple sensor heads to monitor the animal crossing

area from different locations and perspectives should be explored.

• To enhance the system’s robustness against adverse weather conditions, adding lens

hoods or implementing fusion techniques for multiple sensor modalities could be be-

neficial. Also, developing better solutions for the mechanical mounting of the detection

system should be explored to prevent the sensor angle shift issue.

• More research is needed to expand the system to detect a wider range of animal

species and test it in different geographical locations to enhance its scalability and

generalisation capabilities. This could involve training the model on diverse datasets

and conducting field trials in various environments.

• From the message design perspective, more efforts would be required to confirm and

test targeted messages insofar as other types of animals are being detected. While

the strategies recommended may not change, there could be different perceptions and

expectations regarding the warning information presented about different animals.

• As the system can be easily deployed at different sites, the long-term effect of the

system must be evaluated, in order to understand what strategies can be employed

regarding the deployment of the VMSs at multiple sites.

By addressing these recommendations, the LAARMA system may be further refined and

scaled, contributing to improved road safety and wildlife conservation efforts in Queensland

and Australia wide.
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A. VMS Message Concepts (Study 1)

(a) (b)

(c) (d)

(e) (f)

Figure 8.1.: Text only message concepts.
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(a)

(b)

Figure 8.2.: Alternative text options.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.3.: Text and image message concepts.
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(a)

(b)

Figure 8.4.: Image only message concepts.
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B. Demographic Survey (Study 1)

1. Are you aged 18 years or older, reside

in Australia, hold a valid motor vehicle or

motorcycle licence, and drive/ride for at

least one hour per week?

□ Yes

□ No

If no, we thank you for your interest in this

study. Unfortunately, we are looking for

people aged 18 years or older, who reside

in Australia, hold a valid motor vehicle or

motorcycle license, and drive for at least

one hour per week.

2. What is your current age in years? _________ years

3. What is your gender? □ Male

□ Female

□ Other

□ Prefer not to say

4. What type of licence do you hold? If you

hold a motorcycle licence only, please se-

lect the closest equivalent.

□ Learner

□ Provisional 1

□ Provisional 2

□ Open

□ International

5. How long have you held your mo-

tor vehicle/motorcycle licence (including

your learners) (in years)?

_________ years

6. How many hours in an average week do

you drive and/or ride?

_________ hours per week

7. Which Australian State or Territory do you

currently reside in?

□ Queensland

□ New South Wales

□ Australian Capital Territory

□ Victoria

□ Tasmania

□ Northern Territory

□ South Australia

□ Western Australia

8. What is your postcode? _________
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C. Focus Group Schedule (Study 1)

Overview:

Thank you for agreeing to participate in this focus group. Today we will be sharing some

message concepts for a variable messaging sign (VMS) to alert drivers of the presence of

large animals on the road. The VMS will be connected to a device that detects that an animal

is near the road. When the device detects an animal, a message will be displayed on the

VMS to warn approaching drivers. The purpose of this focus group is to discuss what you

think about these message concepts for that warning.

The messages which you will be shown are in the early stage of development. There are

no right, or wrong answers, we are interested in learning about your current perceptions and

thoughts about these messages.

Questions (asked after presentation of each message):

Q1. What was your first reaction to this message?

Q2. Was the message easily understood?

• Was there more than one possible meaning to the message?

• Did you need to read it more than once to be certain of its meaning?

• Did you know what was being depicted in the image?

• Is it important for the image to clearly show what specific animal is nearby? Why/why

not?

• Could it be delivered in a more effective way (text/image/combination)?

Q3. Did the message make you aware of a potential safety hazard?

• Why/why not?

• Was the type of hazard made clear?

Q4. If you were driving on an open road and saw this message, how do you think you

would respond?

• Would you change how you were driving in any way?
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– PROMPT: key behaviours of reducing speeding and monitoring road environment

(if not raised organically)

– PROMPT: interest/intention/willingness to pull up/stop on the road to see the an-

imal (if not raised organically)

Q5. Do you think the message is effective?

• Why/why not?

Q6. What if anything would you change about the message? Keep the same?

• Why should this be changed? How?

Q7. Any final comments about this message?

Q8. What are your thoughts about this alternative wording/design? Which do you prefer?

(asked for paired concepts only)

Final questions (after all messages have been shown):

Q9. The VMS is designed to only display a message when the system detects that there

is an animal nearby. The rest of the time, the screen will be blank. That being said, if you

saw one of these messages, would you understand that it meant that there was an animal

nearby right now? Or would you assume it was a general warning that there are animals in

the area?

Q10. Were there any particular messages that stood out for you? Why?

Thank you for taking part in today’s focus group.
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D. Online Survey (Study 2)

D.1 Part A: Demographics

1. Are you aged 18 years or older, reside

in Australia, hold a valid motor vehicle or

motorcycle licence, and drive/ride for at

least one hour per week?

□ Yes

□ No

If no, we thank you for your interest in this

study. Unfortunately, we are looking for

people aged 18 years or older, who reside

in Australia, hold a valid motor vehicle or

motorcycle license, and drive for at least

one hour per week.

2. What is your current age in years? _________ years

3. What is your gender? □ Male

□ Female

□ Other

□ Prefer not to say

4. What type of licence do you hold? If you

hold a motorcycle licence only, please se-

lect the closest equivalent.

□ Learner

□ Provisional 1

□ Provisional 2

□ Open

□ International

5. How long have you held your mo-

tor vehicle/motorcycle licence (including

your learners) (in years)?

_________ years

6. How many hours in an average week do

you drive and/or ride?

_________ hours per week

7. Which Australian State or Territory do you

currently reside in?

□ Queensland

□ New South Wales

□ Australian Capital Territory

□ Victoria

□ Tasmania

□ Northern Territory

□ South Australia

□ Western Australia

8. What is your postcode? _________
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D.2 Part B: Pre-Acceptance Measures

The following section relates to your general attitudes and intentions to perform specific

actions while driving after being alerted that there is an animal on or near the road.

PART B1: DAYTIME

When answering the questions in this section, please imagine that it is daytime, the weather

is fine, and you are travelling on a single lane, regional road, like the image below.

1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise

2. To what extent would scanning the road environment after seeing messaging about

an animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise
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3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

St
ro
ng

ly

di
sa
gr
ee

N
ei
th
er

ag
re
e

no
r
di
sa
gr
ee

St
ro
ng

ly

ag
re
e

I intend to slow down 1 2 3 4 5 6 7

It is likely that I would slow

down

1 2 3 4 5 6 7

I intend to scan the road

environment

1 2 3 4 5 6 7

It is likely that I would scan

the road environment

1 2 3 4 5 6 7

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

5. How willing would you be to scan the road environment after seeing messaging about

there being an animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

6. If you were driving along a regional road in an area you were unfamiliar with and

saw messaging about there being an animal on or near the road, how likely do you think

you would be to just stop suddenly in an attempt to see the animal?

Extremely

unlikely

Neither likely

nor unlikely

Extremely

likely

PART B2: NIGHTTIME

We would now like to know your general attitudes and intentions to perform the same

driving actions, when driving at nighttime instead of daytime.

When answering these questions, please imagine that it is nighttime, the weather is fine,

and you are travelling on a single lane, regional road.
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1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise

2. To what extent would scanning the road environment after seeing messaging about

an animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise

3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

St
ro
ng

ly

di
sa
gr
ee

N
ei
th
er

ag
re
e

no
r
di
sa
gr
ee

St
ro
ng

ly

ag
re
e

I intend to slow down 1 2 3 4 5 6 7

It is likely that I would slow

down

1 2 3 4 5 6 7

I intend to scan the road

environment

1 2 3 4 5 6 7

It is likely that I would scan

the road environment

1 2 3 4 5 6 7

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

5. How willing would you be to scan the road environment after seeing messaging about

there being an animal on or near the road?
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Not at all willing 1 2 3 4 5 6 7 Very willing

6. If you were driving along and saw messaging about there being an animal on or near

the road, how likely do you think you would be to just stop suddenly in an attempt to see

the animal?

Extremely

unlikely

Neither likely

nor unlikely

Extremely

likely

D.3 Part C: Responses to the Message

1. In a few words can you please describe what the messaging was about?

2. How convincing do you think the messaging was?

Not at all con-

vincing

Neither convincing

nor not convincing

Very convin-

cing

3. How persuasive do you think the messaging was?

Not at all per-

suasive

Neither persuasive

nor not persuasive

Very persuas-

ive

4. Please indicate on the scale below to what extent the following people would be influ-

enced by this messaging?
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N
ot

at
al
l

in
flu

en
ce
d

Ve
ry

in
flu

en
ce
d

How much would you

yourself be influenced?

1 2 3 4 5 6 7

How much do you think

other motorists in general

would be

1 2 3 4 5 6 7

How much would other

motorists of similar age

and gender to you

1 2 3 4 5 6 7

5. If you were driving along and saw this messaging, to what extent would you agree with

the following statements?

St
ro
ng

ly

di
sa
gr
ee

N
ei
th
er

ag
re
e

no
r
di
sa
gr
ee

St
ro
ng

ly

ag
re
e

Assume it was a general

warning about animals in

the area

1 2 3 4 5 6 7

Assume it was a real-time

warning about an animal

being on or near

1 2 3 4 5 6 7

Stop suddenly in your lane

to try and see the animal

1 2 3 4 5 6 7

Slow down and move off to

the side of the road to try

and see the animal

1 2 3 4 5 6 7

Simply ignore the mes-

saging

1 2 3 4 5 6 7
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D.4 Part D: Post-Acceptance Measures

Part D1: DAYTIME

We would now like to understand your general attitudes and intentions to perform specific

driving actions after seeing the previous message.

When answering these questions, please imagine that it is daytime, the weather is fine,

and you are travelling on a single lane, regional road, like the image below.

1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise

2. To what extent would scanning the road environment after seeing messaging about an

animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise
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3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

St
ro
ng

ly

di
sa
gr
ee

N
ei
th
er

ag
re
e

no
r
di
sa
gr
ee

St
ro
ng

ly

ag
re
e

I intend to slow down 1 2 3 4 5 6 7

It is likely that I would slow

down

1 2 3 4 5 6 7

I intend to scan the road

environment

1 2 3 4 5 6 7

It is likely that I would scan

the road environment

1 2 3 4 5 6 7

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

5. How willing would you be to scan the road environment after seeing messaging about

there being an animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

6. If you were driving along a regional road in an area you were unfamiliar with and saw

messaging about there being an animal on or near the road, how likely do you think you

would be to just stop suddenly in an attempt to see the animal?

Extremely

unlikely

Neither likely

nor unlikely

Extremely

likely

PART D2: NIGHTTIME

Once again, we would now like to know your general attitudes and intentions to perform

the same driving actions when driving at nighttime, instead of daytime.

When answering these questions, please imagine that it is nighttime, the weather is fine,

and you are travelling on a single lane, regional road.
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1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise

2. To what extent would scanning the road environment after seeing messaging about an

animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe

Bad 1 2 3 4 5 6 7 Good

Unwise 1 2 3 4 5 6 7 Wise

3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

St
ro
ng

ly

di
sa
gr
ee

N
ei
th
er

ag
re
e

no
r
di
sa
gr
ee

St
ro
ng

ly

ag
re
e

I intend to slow down 1 2 3 4 5 6 7

It is likely that I would slow

down

1 2 3 4 5 6 7

I intend to scan the road

environment

1 2 3 4 5 6 7

It is likely that I would scan

the road environment

1 2 3 4 5 6 7

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

5. How willing would you be to scan the road environment after seeing messaging about

there being an animal on or near the road?
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Not at all willing 1 2 3 4 5 6 7 Very willing

6. If you were driving along a regional road in an area you were unfamiliar with and saw

messaging about there being an animal on or near the road, how likely do you think you

would be to just stop suddenly in an attempt to see the animal?

Extremely

unlikely

Neither likely

nor unlikely

Extremely

likely

D.5 Part E: Message Strategies

1. To what extent do you agree that the following driving strategies would be useful if you

saw a message about a cassowary having been detected ahead or near the road?

St
ro
ng

ly

di
sa
gr
ee

N
ei
th
er

ag
re
e

no
r
di
sa
gr
ee

St
ro
ng

ly

ag
re
e

Slow down, look out 1 2 3 4 5 6 7

Look out, slow down 1 2 3 4 5 6 7

Reduce speed, be alert 1 2 3 4 5 6 7

Be alert, reduce speed 1 2 3 4 5 6 7

2. Please briefly explain why you provided these scores.

3. Do you have any other suggestions to improve these messages?

Section D: Online Survey (Study 2) 256


	Cover
	1 Introduction
	1.1 Background
	1.2 Project Objectives
	1.3 Developed System Overview
	1.4 Roles and Responsibilities
	1.5 Open-Source Code

	2 Literature Review
	2.1 Animal–Vehicle Collisions and Road Safety (QUT)
	2.1.1 Introduction
	2.1.2 Background
	2.1.3 Messaging Design
	2.1.4 Concluding Comments

	2.2 Roadside Animal Detection Systems (USYD)
	2.2.1 Introduction
	2.2.2 Existing Systems
	2.2.3 Sensors
	2.2.4 Machine Learning Approaches
	2.2.5 Field Trials
	2.2.6 Conclusions


	3 Animal Detection System Development and Testing (USYD)
	3.1 Introduction
	3.2 System Development
	3.2.1 Hardware Design
	3.2.2 Software Structure
	3.2.3 Self-Training Machine Learning Pipeline

	3.3 System Testing
	3.3.1 System Functions Tests
	3.3.2 Fine-Tuned Detection Model Evaluation

	3.4 Conclusions

	4 Message Design and Testing (QUT)
	4.1 Introduction
	4.1.1 Background
	4.1.2 Method
	4.1.3 Key Findings
	4.1.4 Chapter Structure

	4.2 Study 1
	4.2.1 Overview
	4.2.2 Method
	4.2.3 Results
	4.2.4 Summary of Study 1

	4.3 Study 2
	4.3.1 Overview
	4.3.2 Method
	4.3.3 Results
	4.3.4 Summary on Study 2

	4.4 Conclusions
	4.4.1 Key Findings
	4.4.2 Strength and Limitations

	4.5 Practical Consideration for Implementation

	5 Simulation Study of Driver Behaviour (QUT)
	5.1 Introduction
	5.1.1 Background
	5.1.2 Method
	5.1.3 Key Findings

	5.2 Study and Participants
	5.3 Approach and Event Windows Analysis
	5.3.1 Rationale for Event and Approach Windows Selection

	5.4 Background
	5.4.1 Celeration
	5.4.2 Average Normalised Speed
	5.4.3 Predictor Variables and Statistical Model Outputs
	5.4.4 Statistical Methods and Modelling

	5.5 Results Analysis
	5.5.1 Animals Walk by the Side of the Road
	5.5.2 Animals Cross the Road
	5.5.3 Conclusions


	6 Field Trial (USYD)
	6.1 Introduction
	6.2 Data Collection
	6.2.1 System Installation
	6.2.2 Collection Locations

	6.3 On-Road Trial
	6.4 Data Extraction and Usage
	6.4.1 Selective Data Extraction and Iterative Model Update
	6.4.2 Selective Data Extraction for Manual Inspection

	6.5 Challenges
	6.5.1 Solar Power Issue
	6.5.2 Sensor Occlusion
	6.5.3 Weather Influence
	6.5.4 Sensor Angle Shift

	6.6 Conclusions

	7 Data Analysis
	7.1 Introduction
	7.2 Animal Detection System Analysis (USYD)
	7.2.1 Field Data Analysis
	7.2.2 Detection Performance Evaluation
	7.2.3 System Evaluation
	7.2.4 Conclusions

	7.3 Driver Behaviour Analysis (QUT)
	7.3.1 Site Information
	7.3.2 Traffic Data Cleaning
	7.3.3 Traffic Statistics
	7.3.4 Impact of LAARMA on Driver Behaviour and Vehicle Speeds
	7.3.5 Crash Reduction Estimation
	7.3.6 Conclusions


	8 Conclusions and Recommendations
	References
	Appendices (QUT)
	A VMS Message Concepts (Study 1)
	B Demographic Survey (Study 1)
	C Focus Group Schedule (Study 1)
	D Online Survey (Study 2)
	D.1 Part A: Demographics
	D.2 Part B: Pre-Acceptance Measures
	D.3 Part C: Responses to the Message
	D.4 Part D: Post-Acceptance Measures
	D.5 Part E: Message Strategies



