Queensland
University
of Technology

swokey (S

Australian Centre
for Robotics

Final Report:
The Development and Performance Testing of a

LAARMA—Large Animal Activated Roadside
Monitoring and Alert System

Project Chief Investigators:

Dr Mao Shan'’

Prof loni Lewis?"

Dr Mohammed Elhenawy?
Dr Kunming Li'

Prof Sebastien Glaser?

Dr Stewart Worrall!

"Australian Centre for Robotics

The University of Sydney
2Centre for Accident Research & Road Safety - Queensland

Queensland University of Technology

"Both investigators contributed equally to this work

10 December 2024

Version: 1.0

“This research is funded by iIMOVE CRC and supported by the Cooperative Research

Centres program, an Australian Government initiative.”



Document History

Version Date Author(s) Note(s)

0.1 31/8/24  Mao Shan, loni Lewis, Mohammed Initial draft
Elhenawy, Kunming Li, Sebastien
Glaser, Stewart Worrall

0.2  25/10/24 Mao Shan, loni Lewis, Mohammed Updated to incorporate
Elhenawy feedback from TMR

0.3  25/11/24 Mohammed Elhenawy, loni Lewis Updated to incorporate

feedback from TMR
1.0 10/12/24  Mao Shan Final version; improved

document formatting




Executive Summary

Animal-Vehicle Collisions (AVCs) present a significant threat to wildlife conservation and hu-
man safety, particularly in wildlife-rich areas like regional Australia. Conventional mitigation
measures, such as wildlife crossings and fencing, are often limited by geographical and finan-
cial constraints. While driver awareness campaigns may raise awareness about the general
risk of AVCs, they are not and cannot be targeted to context- or time-specific instances where
a motorist must take action because an animal is on or near the road. Thus, there is a critical
need for real-time interventions that inform motorists of an impending hazard in terms of an

animal having been detected on or near the road.

Variable Message Sign

Animal Detection System

Figure 1.: An overview of the developed LAARMA system.

Driver Behaviour Analysis

This collaborative study, conducted by The University of Sydney, Queensland University
of Technology, and the Queensland Government’s Department of Transport and Main Roads,
developed a novel Large Animal Activated Roadside Monitoring and Alert (LAARMA) system,
as presented in Figure 1. The LAARMA system integrates several advanced technologies, in-
cluding a multi-sensor detection suite, a machine learning-based animal detection algorithm,
and purpose-devised Variable Message Sign (VMS) messaging. Specifically, the system mon-
itors roadside large animals, in particular, cassowaries, at distances of up to 200 metres via a
relatively cost-effective suite of perception sensors in various weather conditions. Upon de-

tecting a cassowary on or near the road, the system immediately triggers a warning message



to be displayed on a roadside VMS. The messaging was purposefully devised and sought to
ensure drivers’ awareness of the alert as a real-time hazard. An innovative feature of the an-
imal detection in the LAARMA system was its self-supervised learning pipeline, which enabled
the system to automatically label real-world animal data collected during field operations,
continually improving its accuracy and reliability without extensive human supervision. This
approach has shown effectiveness in addressing the challenge of data scarcity, particularly

in cases where insufficient training data existed for specific animal species.

Prior to the conduct of an on-road trial of the LAARMA technology, a series of messaging
concepts were developed, then concept-tested via qualitative focus groups (Study 1), and fi-
nally evaluated via a large-scale online survey of drivers’ responses to messaging (Study
2). Such aspects were underpinned by robust conceptual and methodological approaches to
message design and evaluation; namely, the Step approach to Message Design and Testing
(SatMDT). From an initial 20 messages at concept-testing (conducted with N = 36 licensed
drivers/riders across eight focus groups), four messages were selected for further evaluation
in the online survey (with N = 557 licensed drivers/riders who were allocated to either a
message condition to see one of the four messages being tested or a control, no-message
condition to enable comparisons between groups and relative to a baseline). Overall, all four
messages evaluated in Study 2 performed consistently well across all measures of effective-
ness, which suggests that the implementation of any of these messages would likely have
the intended effects on driving behaviours. However, there were instances where some mes-
sages appeared to outperform others on specific measures and suggests that there is scope
to selectively apply messages according to the parameters that are considered of highest
priority. Noting the VMS was to display a message across 2 screens, for screen 1 of the
message, a greater portion of participants across both Study 1 and 2 reported that it would
be more effective to identify the type of animal on the signage compared to participants
who reported that the animal should not be identified. For screen 2, there were no significant
differences in how useful participants perceived the four driving strategies that were tested;
however, participants across both studies commented that the slowing down strategy should
be presented before the scanning strategy as it made sense the first important response to
encourage was to have motorists slow down. Participants across both studies emphasised
the importance of motorists understanding that the message was a real-time warning, and
expressed concerns that motorists might become complacent if the sign were to remain ac-
tivated and/or they did not come across any animals while driving. This provided support

for leaving the sign blank and only flashing a message when an animal had been detected.

The first of the behavioural monitoring studies in this program of research comprised a

driving simulator study. Two messages (from Study 2), as shown in Figure 2, were selected
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Figure 2.: Visuals for the VMS. The display for the first message alternated the images (a) and (c), while the

display for the second message alternated the images (b) and (c).

for testing in this simulator study. The simulator study comprised 51 participants (all of whom
were required to be licensed drivers/riders) who each undertook a 40-minute simulated drive.
During the drive, participants were shown one of the messages and in relation to scenarios
where a cassowary was either crossing the road or walking alongside the road. Results were
also considered in relation to two key analysis windows: the approach window and the event
window. The approach window commenced 5 seconds before reaching the VMS and ended
exactly where the VMS was situated. The event window essentially captures behaviour in
the cassowary detection zone and corresponded to the point where the Time-To-Collision
(TTC) equalled zero. Overall, the results from the simulator study provided support for the
effectiveness of the messaging in significantly reducing participants’ speeds in the approach
zone; however, no such significant reduction was found for speeds in the event zone. In other
words, participants’ initial response on sighting a message on the VMS was to significantly
reduce one’s speed. The results also highlighted that while both messages were associated
with positive behavioural effects in terms of speed reductions, there were some differences
in the relative effectiveness of the two messages that were tested depending on whether the
scenario was a cassowary crossing the road or appearing alongside the road. The latter
finding highlighted that consideration should be given to the specific intent of a message to

ensure selection of the optimal message for a given purpose.

The final study within the program of research comprised a five-month field trial of the
technology and messaging at a site in Far North Queensland (FNQ) where it was known that
cassowaries frequented. After the system'’s installation in late January 2024, it underwent
three months of data collection for model training, followed by a two-month on-road trial
during which the designed YMS message was displayed to alert motorists to cassowary de-
tection events, as illustrated in Figure 3. A total of 287 manually-verified cassowary sightings
were recorded from 8 March to 30 June 2024, providing valuable insights into cassowary

activities from month to month, and serving as ground truth for evaluating detection per-
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Figure 3.: Installation of the animal detection system onto the VMS trailer and its deployment in the field are
shown. (a) shows the VMS in the field with the detection system installed. (b) shows an example
of cassowary detection using the trained model. (c) shows the message displayed on the VMS for

notifying motorists the real-time cassowary detection event.

formance. Despite some technical challenges, the system effectively triggered VMS alerts
for motorists upon detecting a cassowary on or near the road during the on-road trial from
30 April to 30 June 2024. The on-road trial results validated the LAARMA system'’s ability to
detect cassowaries under real-world conditions, achieving a recall rate of 0.97. This means
the system accurately triggered for 97% of the events where cassowaries were present. The
exceptionally high recall demonstrates the system’s high sensitivity in detecting cassowaries
crossing or near the road, a critical aspect for road safety-related use cases. Notably, the
self-training machine learning pipeline proved to be a robust method for continuous model
improvement. There are in total 10 models trained during the data collection and on-road trial
periods, using data available up to different dates. Quantitative evaluation results showed a
clear trend of improved model performance over time. For instance, for detecting cassowar-
ies within a 100-metre range, the mean True Positive Rate (TPR) increased significantly from
4.2% for the first trained model, to 78.5% for the last trained model. A significant increase in
mean TPR was also observed for detecting cassowaries between 100 and 200 meters. Over-
all, the field trial demonstrated that using synthetic data for initial training and auto labelling
with a Vision-Language Model (VLM) was effective in overcoming the data scarcity problem
and improving model performance. In addition, the field data analysis results discussed the
strengths and limitations of different sensor modalities for detecting cassowaries at different
ranges, providing a general guideline for choosing the suitable sensor configuration when

deploying the system at new animal crossing sites.

In addition to the animal detection results, the driver behaviour analysis across four vehicle
monitoring sites in the field trial, as illustrated in Figure 4, provided support for the positive
effects of the LAARMA system and the messaging it triggers on motorists’ behaviour. Spe-
cifically, the field traffic data analysis revealed significant reductions in vehicle speeds in the

event zone, with decreases of 6.30 km/h and 5.06 km/h at two sites, respectively, when
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Figure 4.: Map of the four vehicle speed monitoring sites corresponding to the approach zone (i.e., Sites 1 and

2) and the event zone (i.e., Sites 3 and 4).

messaging was displayed on the VMS (as triggered by the LAARMA system). These speed
reductions correspond to approximately 10% of the posted speed limit of 60 km/h in the
trial area. In the approach zone, while the VMS still played a significant role in reducing
speeds, the decrease was slightly less pronounced, with reductions of 4.26 km/h and 3.44
km/h at two sites, respectively. The crash reduction analysis further supported this, showing
that LAARMA's impact is more pronounced in the event zone, where significant reductions in
fatal and serious injuries were observed using the Nilsson power model. Overall, the analysis
results provided support for the road safety benefits of the system and efforts to mitigate
potential AVCs.

In conclusion, the study highlights the effectiveness of combining advanced machine learning-
based detection technologies with purpose-devised messaging displayed on roadside VMS.
Together, these elements comprising the LAARMA system resulted in positive effects on influ-
encing motorists’ behaviour, as demonstrated in a driving simulator as well as in an on-road
field trial. The comprehensive program of research offers valuable and practical insights for
similar deployments of such technology for detecting animals on or near the road in other

regions.
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Introduction

This technical report provides a comprehensive summary of the outcomes for the Queensland
Government’s Department of Transport and Main Roads (TMR) project titled “The Develop-
ment and Performance Testing of a LAARMA—Large Animal Activated Roadside Monitoring
and Alert System”.

This one-year project started on 1 September 2023 and finished on 31 August 2024, and
was conducted by the joint team of Australian Centre for Robotics (ACFR) at The University of
Sydney (USYD) and Centre for Accident Research and Road Safety - Queensland (CARRS-Q)
at the Queensland University of Technology (QUT).

1.1. Background

Roadkill resulting from Animal-Vehicle Collisions (AVCs) is not just a tragic loss of wildlife but
also poses a significant safety hazard to humans. In regions like Australia, where diverse
fauna often intersects with human infrastructure, the issue is particularly pronounced. The

presence of large animals on roads and roadsides present road safety risks due to:
« Vehicle strikes of large animals;

« Erratic driver responses to being startled by animals on the roadside and taking evasive

action to avoid striking the animal.



Conventional mitigation measures, such as wildlife crossings and fencing, are often lim-
ited by geographical and financial constraints. Addressing this, there has been a surge in
both research endeavours and commercial products focusing on Roadside Animal Detection
Systems (RADSs) and analogous systems. These initiatives aim to bridge the gap between
the natural habitats of animals and the ever-expanding road networks. Deployed in both
controlled laboratory settings and real-world environments, these systems are engineered to
detect animals in proximity to roads. By doing so, they serve a dual purpose: alerting motor-
ists to enhance their vigilance and providing guidance on safely navigating interactions with

the detected wildlife. However, challenges still exist in these existing solutions, for instance:

+ Some RADSs introduce artificial stimuli (e.g., lights and sounds) that may disrupt natural

animal behaviours and habitats.

» Many systems are associated with high installation and maintenance costs, which pose

barriers to widespread adoption.

+ Questions remain about how well these technologies can be scaled and integrated into
different geographic and climatic regions, as well as their adaptability to Australia-

specific conditions.

+ Innovative machine-learning-based approaches have emerged as promising solutions
for animal detection; however, these approaches face challenges in detecting species

where there is insufficient existing data for model training.

 There is a significant lack of specific quantifiable outcomes and statistical analyses

reflecting the reduction in AVCs and enhancement of road safety.

+ There is a need for more research on the effectiveness of specific variable warning

messaging content in reducing AVCs.

1.2. Project Objectives

The intent of this project was to develop and field test a system for detecting large animals
on the roadside and prompting an alert to motorists to provide advanced warning of the

hazard. The project has two overarching aims which are to:

+ Accurately and reliably detect and identify large animals on the road and roadside

at distances up to 200 metres under various weather conditions, including daytime,

Section 1.2: Project Objectives



nighttime, rain, and dry conditions.

- System shall utilise machine learning to “train” itself in accurate detection and

identification of large animals,

- Create open-source software for the detection and identification of animals on the

roadside.

+ Evaluate changes in driver behaviour (road safety) in response to animals on roadside

when drivers are provided advanced message of real-time hazard. Specifically:

Detect change characteristics in driver behaviour (braking, speed profile change,

lane departure),

Measure magnitude of change in driver behaviour,

Measure duration of the change in driver behaviour (from installation of warning

system), and

Evaluate which message wording is more effective.

1.3. Developed System Overview

Variable Message Sign

Animal Detection System

»

Figure 1.1.: An overview of the developed LAARMA system.

Driver Behaviour Analysis

To achieve the project objectives outlined in Section 1.2, the joint team carried out research
and development work on subsystems including the perception sensor suite for roadside an-
imal detection, the associated software for artificial intelligence (Al) inference running on the
edge computer, the message design for the Variable Message Sign (VMS), and driver beha-
viour monitoring for road safety analysis. An overview of the proposed system is presented

in Figure 1.1. Figure 1.2 provides a diagrammatic representation of the overall project.

Section 1.3: Developed System Overview
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Figure 1.2.: A diagrammatic representation of the research and development components and studies within

the overall LAARMA system project. From top to bottom, the figure clearly illustrates the sequence

of these components and studies, with some being conducted concurrently by the USYD team (in

blue) and the QUT team (in yellow), while the rest (in green) are conducted jointly by both teams.

Field trial results obtained from Far North Queensland (FNQ) have shown the effectiveness

of the developed system in detecting cassowaries and improving road safety outcomes. As

noted, particular focus in this project was upon the detection of cassowaries although the

system was designed and developed with the capability to extend its application to large

animals more broadly.

Section 1.3: Developed System Overview



1.4. Roles and Responsibilities

The USYD and QUT teams have collaborated closely to share the project work and deliver
the project outcomes jointly. Each team is the lead institute for different components of the

project, as illustrated in Figure 1.2 and also listed in Table 1.1.

Project Work Lead Institute
Literature Review USYD & QUT
RED Animal detection system development & testing | USYD

VMS message design & testing QuUT
Driving Simulator Study QuT
Field Trial USYD
Data Analysis Detection system evaluation USYD

Driver behaviour evaluation QUT
Reporting USYD & QUT

Table 1.1.: Project scope and work distribution.

1.5. Open-Source Code

The project source code is available for free access through the following two GitHub repos-

itories:

https://github.com/acfr/CassDetect.git https://github.com/acfr/laarma.git

Section 1.4: Roles and Responsibilities
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2.1. Animal-Vehicle Collisions and Road Safety (QUT)

2.1.1 Introduction

This review was prepared by Ms Nyree Gordon and Ms Amy Schramm together with Prof
loni Lewis. It includes information on the scope and nature of AVCs in Australia and around
the world. Interventions and their effectiveness in reducing AVCs are also reviewed; how-
ever, given the nature of the proposed intervention involving technology-based solutions to
deliver real-time warnings via portable roadside messaging in this project, particular focus
within this review was upon the development of messaging content as well as the means by
which to evaluate the effectiveness of such messaging in helping to reduce AVCs. This focus
includes an overview of the conceptual framework underpinning the design and evaluation
of messaging strategies, the Step approach to Message Design and Testing (SatMDT [1]). This
framework also underpins this program of research with respect to the development, testing,
and evaluation of messaging content to be delivered by an innovative, real-time responsive
technological solution advising motorists when an animal has been detected on or nearby
the road.

To identify relevant literature, including government reports and academic papers, the

following databases were searched:

SpringerLink

« ScienceDirect

Google Scholar

Web of Science

To capture the broad scope of information required and variable descriptors within its

research, the following search terms were used:

Animal-vehicle crash (AND intervention OR evaluation)

Wildlife-vehicle crash (AND intervention OR evaluation)

Road safety (AND messaging OR intervention OR evaluation)

Health messaging

Section 2.1: Animal-Vehicle Collisions and Road Safety (QUT)



2.1.2 Background

2.1.2.A. Animal-Vehicle Collisions

Animal-vehicle collisions, or AVCs, are referred to using different terms in the literature, in-
cluding not only AVCs but terms such as deer-vehicle collisions, and wildlife-vehicle collisions
(WVCs). For the purposes of this review, the term AVCs is adopted.

AVCs are associated with substantial costs to individuals, communities, and the environment
each year. In 2004, over a billion dollars of vehicle damage was reported annually in the
United States due to crashes involving animals [2]. The human and societal costs of injury,
rehabilitation and death cannot be quantified, nor can the effects of AVCs on conservation
efforts. Analysis of crash data in the US between 1965 and 2017 found that there was a
four-fold increase in animal fatalities resulting from AVCs in that time [3]. Unfortunately, in
countries such as Australia, a large number of native and protected species are particularly

vulnerable [2] making it a substantial threat to those ecologies.

The main cause of human injury and/or vehicle damage related to AVCs is not in terms
of actual impact with the animal but more often the result of impact-avoidance measures,
such as extreme braking and swerving [4-7]. These manoeuvres can lead to loss of vehicle
control, rollovers or impact with secondary objects, exacerbating the damage and, thus, cost

and severity of the incident.

The occurrence of AVCs is influenced by various factors relating to motorists, animals,
and the environment (e.g., road infrastructure and time of day as well as ecological factors
pertaining to animals’ mating seasons and climatic conditions). The subsequent sections of
this review highlight studies which have provided insight into one or more of these factors,

but first an overview of this project and the animals to be of focus within it, is provided.

The southern cassowary (Casuarius casuarius johnsonii) is a large flightless bird, endemic to
north-east Queensland where it is found in pristine rainforest as well as urbanised areas. It is
listed as an endangered species by both the Australian Commonwealth and Queensland State
Governments, with motor vehicle strikes posing a significant threat to the species’ subsistence.
The Queensland Government’s TMR [8] reports that 174 cassowary deaths were attributed to
vehicle strikes between 1996 and 2018. In most cases, AVCs in which a cassowary is fatally
wounded also evoke considerable distress to the local community who may often be able to

readily identify and affectionately ‘name’ particular birds who reside in their area.

Section 2.1: Animal-Vehicle Collisions and Road Safety (QUT)
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At heights of up to two metres and weights up to 85 kg [9], the cassowary qualifies as a
large animal. Collisions related to these animals can lead to significant damage to property,
injury and loss of life. Despite its size, the chances of a cassowary surviving a vehicle
strike are low, according to Rigby [10]. The cassowary makes a valuable contribution to the
regeneration and shaping of our rainforests through seed dispersal [11]. Lower numbers of
cassowary will lead to a disruption in rainforest ecology which will then have flow-on effects,
such as loss of flora species which, in turn, effects fauna etcetera. Lastly, as an iconic and
culturally significant animal, the cassowary holds tourism value for its area. The ongoing

success of the species is of benefit to everyone.

A range of measures have been trialed to reduce vehicle strikes of cassowaries and other
large animals. These measures have included reduction in speeds through areas of known
habitat, warning signs and infrastructure solutions (e.g., bridges and fencing). However, with
the evolution of technology, comes opportunity for innovative and potentially impactful ways,
in terms of influencing motorists” preparedness (to encounter such animals) and behaviour
(to reduce speeds and monitor the environment) to be devised and implemented. The current
program of research will devise and evaluate the effectiveness of real-time messaging de-
livered as part of an innovative technological solution. The technology, based upon machine
learning to identify cassowaries when on or near roads, will trigger a message to motorists

to warn of the potential hazard.

2.1.2.B. Factors Influencing Animal-Vehicle Collisions

Overall, limited research has been conducted in Australia regarding factors influencing AVCs.
Almost two decades ago, the Rural and Remote Road Safety Study, conducted by the CARRS-Q
and the Rural Health Research Unit (RHRU) at James Cook University, aimed to identify the
human, vehicular, and environmental factors that contributed to serious road casualties in
rural and remote North Queensland [2]. From March 2004 to June 2007, interviews were
conducted with 383 patients who were hospitalised due to a crash (298 male). Information
gathered included demographic details, attitudes to road safety and enforcement, alcohol and
drug consumption. Patients were also asked to describe the crash in their own words. In this
study, animal-related crashes accounted for 5.5% of all on-road serious casualties with night-
time travel being a prominent risk factor for such a crash. Animal-motorcycle crashes were of
the highest rate (51.7%) of any of the on-road crashes investigated in this study. A significant
proportion of swerve and avoid crashes were also reported. Several patients reported having
no warning with animals appearing at close range moments before impact. Elevated crash

counts in higher speed zones suggested that drivers/riders need to be particularly vigilant

Section 2.1: Animal-Vehicle Collisions and Road Safety (QUT)
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Figure 2.1.: An example of some traditional roadside advisory signs used in the past in Queensland regarding

areas of potential road crossing by wild animals.

in these areas, especially at the high-risk times of dawn, dusk, and darkness when animals
may be more likely to be moving about. The high proportion of kangaroos and wallabies
involved in these crashes (44.8%) highlighted the need for interventions to address AVCs
which were specific to the Australian driving context and addressing large(r) animals. Figure
2.1 provides an example of signs used in the past in Queensland to advise of road crossings
of wild animals. The official meaning of these signs, as was explained by the Queensland
Government [12], was that “the road ahead is an area where wild animals are known to cross,
or be on, the road and can be a hazard”. This information is relatively generic and vague
which can contribute to habituation and, ultimately, have a limited effect on driver behaviour.
The Rowden et al. [2] study also highlighted that there was likely underreporting of AVCs in

that only those resulting in serious injury (to a human) were likely to be reported.

To understand more about AVCs, there have been studies which have examined the person-
, animal-, and environment-related aspects that are associated with such incidents. The
subsequent section also presents some evidence based on statistical modelling procedures

that have been used in the attempt to highlight at-risk locations for AVCs.
Person-Related Factors

A recent large-scale survey in Hungary explored the habits and attitudes of 1942 drivers
regarding AVCs [5]. The researchers found that drivers who had less experience with, and fear
of, AVCs drove with more confidence, at higher speeds and less vigilance than those who had
experienced and/or who were fearful of being involved in AVCs. They also found that with
more years of driving experience, there was also an increase in one’s perceived ability to
handle unexpected driving situations, such as an animal encounter. Perhaps unsurprisingly,

it was also found that drivers who reported a higher regard for the importance of nature
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PULL-OFF the road
when stopping to
take photos, enjoy

scenery or read
maps.

Figure 2.2.: Example of road safety sign (Road Safety Advisory Council, Tasmania [13]).

conservation and/or traffic safety in relation to preventing AVCs self-reported driving with

more care and attention [5].

Other evidence relating to person-related factors has found that a lack of knowledge about
the appropriate or correct course of action in the event of an animal encounter also influences
potential AVCs [2, 4, 5]. The nature of AVCs avoidance manoeuvres that a driver or rider may
need to implement such as swerving to avoid an animal can also increase the likelihood of
a serious injury crash [4]. While research has shown that the safest solution for a motorist
is to actually slow down and (unfortunately) hit the animal, in a study of crash mechanisms
involved in 366 AVCs in Australia, Wilson et al. [7] reported that 58.5% of AVCs involved
the motorist swerving to avoid impact with the animal. Unfortunately, however, swerving
can often result in collision with adjacent objects, such as other vehicles, trees, poles and

guardrails thus increasing the severity and costs of the crash [2, 7].

Additional considerations of this project are road safety issues related to motorists’ (and
potentially more so for motorists who are tourists to the area) behaviours around wanting
to sight cassowaries when advised of their presence. The distraction of trying to sight a
cassowary in the wild while operating a vehicle poses a significant risk to all road users.
In areas known as popular tourist areas, some jurisdictions have opted to erect signage
advising motorists of safety requirements when wanting to observe surrounding attractions.
For instance, the sign shown in Figure 2.2 is an example from the Road Safety Advisory
Council in Tasmania [13] to encourage motorists to pull off the road whenever stopping to
take photographs or enjoy the scenery. Related to messaging of this nature and especially
pertinent to this project is that it will be important to check for any unintended behaviours
of motorists such as their braking suddenly and pulling up in a carriageway in response to

messaging about cassowaries being in the vicinity in the hope of seeing one.

A further consideration is non-English speaking tourists. Limited work has examined the

Section 2.1: Animal-Vehicle Collisions and Road Safety (QUT)

1



use of bilingual messaging on road signs. Research from Finland examined the visual de-
mand associated with the display of alternating bilingual messages on VMS. An experimental
driving study was conducted in Finland with a VMS displaying a “LOOSE GRAVEL" message
either as a bilingual message or alternating between Swedish and Finnish for 2 seconds per
frame [14]. No significant difference in eye fixations between the three sign configurations,
although the authors note that more complicated signs may illicit different driver responses
[14]. While no significant difference due to age was found, older drivers’ gaze durations and

longest fixation duration trended higher when compared with younger drivers [14].
Animal-Related Factors

Animal factors influencing AVCs occurrence range from the physicality of particular species
to their social behaviours. Borza et al. [5] and Hill, et al. [3] reported that animals larger in
size accounted for the highest number of AVCs (which could also be due to the reporting bias
that AVCs associated with larger animals are more likely to be severe and thus reported).
Bil [4] reported that while less than 5% of AVCs occurring in Canada resulted in injury to a
human, the risk of injury is related to the size of the animal involved. AVCs involving large
animals (e.g., moose or camel) are more likely to result in a vehicle occupant sustaining
serious or fatal injury. It is noted that, as a large animal, cassowary-vehicle crashes fall into
the category of posing higher risk of severe outcomes. A large-scale study conducted by
Cook and Blumstein [15] aimed at explaining variations in vulnerability to AVCs based on a
number of different animal species. They found that omnivorous mammals (that eat both
plants and animals) have the highest rate of being killed in AVCs while carnivorous mammals
(that feed on other animals) have the lowest. Their results also suggested that mammals and
birds that are known to be more social (e.g., wolves, emus) seem to be less vulnerable to
being killed in AVCs than solitary animals (e.g., moose, koalas). They also reported that diet is
an influential contributor to that vulnerability. That is, nocturnal animals are more vulnerable
to AVCs with the majority occurring between sunset and sunrise when such animals are on
the search for food [7, 16-18]; while seasonal factors such as drought and mating cycles are
also significant factors contributing to AVCs [19]. Higher levels of movement have been noted
in times of drought as animals search for food and water for survival and, likewise, activity

and movement of animals increases during mating seasons.

In Australia, research has been conducted that examined the risk of wildlife collisions for six
terrestrial native species in Victoria. Two kangaroo species (Eastern Grey and Black Wallaby),
two possum species (Common Ringtail and Common Brushtail), as well as wombat and koala
collisions were included in the study [20]. The study demonstrated that species-specific

environmental and anthropogenic variables influenced the risk of AVCs. More specifically,
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the most suitable habitat for a species, prevalence (occurrence rate) of the species and traffic
speeds influenced AVCs risk such that vehicles travelling at higher speeds were less likely
to avoid a crash whether with the animal or as a result of swerving [20]. It was also noted
that some species (such as reptiles who like to sun themselves on bitumen) are attracted to
roads, therefore increasing their risk of AVCs involvement. Kangaroos are the most common
animal involved in AVCs in Australia [7]. By their nature, kangaroos are fast moving and thus
can appear suddenly giving motorists little time to respond. Wilson, et al. [7] reviewed 366
cases of patients (278 male, median age = 40) admitted to a tertiary trauma centre as a
result of kangaroo-related crashes between 2000 and 2020. Swerving was found to be the
most common cause of crashes and to be more common at night, possibly further impacted
due to the motorist having diminished visibility. Time of year was not found to influence
the occurrence of AVCs in this study (which was somewhat unusual and may be influenced
by species); however, sunrise was identified as the most common time for crashes. Based
on these findings, the authors recommended driving with extra caution around dawn and to

follow “current Australian government advice that discourages swerving” [7].
Environment-Related Factors

The preceding section highlighted environmental factors such as drought and the mating
cycles of animals that may influence occurrence of AVCs. Weather and time of year are also
notable factors found in most research [16, 18, 21, 22], with an exception noted in the case of
[7]. For example, hibernation patterns dictate prevalence of certain animals around roadways
at different times of the year while rain and wet conditions are known to be preferred for

amphibian migration [23].

Studies in Australia, Europe and the USA also note an increased risk for AVCs in rural
landscapes and urban-rural border areas [2, 16, 24]. Single lane or 2-lane rural roads, high
animal density, and thick vegetation found in rural areas and national parks are all factors
that increase the risk of AVCs [25, 26]. Unfortunately, as cities grow and encroach on rural
landscapes, animals must alter their patterns and activity to survive. Naidenko et al., [27]
describe the white-tailed deer as a significant threat to road safety in the USA, partly due
to its adaptability to urban landscapes while Madgwick [28] explains that the cassowary has
become more of an urban dweller by default, as development encroaches into its natural
habitat. The unpredictability of how animals will adapt to changing landscapes presents an

ongoing risk for AVCs.

Regarding the environment in terms of the road context and infrastructure, however, trans-

port infrastructure affects wildlife in four major ways. This includes fragmenting populations,
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disturbing natural behaviours, direct mortality (collisions) and indirect mortality [21, 29, 30].
Influential factors on AVCs along a major highway in northern Zimbabwe were assessed by
Gandiwa, et al. [31]. This study’s findings revealed that roadside water sources, such as dams,
and denser vegetation found adjacent to roads were a major attraction for wild animals in-
cluding mammials, reptiles, birds and amphibians and which increased the risk of AVCs, while
road design such as curves and hills limiting forward vision was also a factor. Diaz-Varela, et
al. [32] analysed data from 377 collision points on a 1426-kilometre road network in Lugo,
Northwest Spain, between 2006 and 2007. They found that road type and quality of road
influence the probability of AVCs occurrence such that 60% of the crashes in their database

occurred on basic primary roads with limited infrastructure.

The broad range of influences and possible combinations of person-, animal-, and environment-
related factors contributing to AVCs require an equally diverse and comprehensive range of
countermeasures to address such factors. The subsequent section overviews some evidence
based on statistical modelling approaches. This evidence is presented to the extent that it
highlights the efforts undertaken to understand more about factors contributing to AVCs and

how at-risk locations may be identified.
Statistical Modelling To Understand More About Animal-Vehicle Collisions

Statistical modelling approaches have been implemented to further understand and pre-
dict AVCs. Modelling may also support decision-making where data may be limited (e.g.,
underreporting of AVCs). A study conducted in Maine in the US found that underreporting of
wildlife-vehicle collisions did not influence predictive model accuracy to detect AVCs hotspots,

providing that that 30% or more of AVCs were reported [33].

Various modelling approaches have been used to identify AVCs hotspots. Of particular
interest to this project is the use of Poisson CAR GLM to identify vehicle strike hotspots of cas-
sowaries in the area surrounding Mission Beach, Queensland [34]. Poisson models assess risk
while considering other elements, such as geographical design [35]. This study used inform-
ation from a local database of cassowary sightings between 1999 and 2012 and statistically
modelled which areas, time frames and life stages were related to elevated vehicle strike fre-
quency. The understanding of influences on wildlife vehicle strike clustering obtained from
this process is transferrable to a wide range of species and is particularly useful in developing
appropriate mitigation methods for a geographic area. Closely related to Poisson is Niche-
based ecological modelling that Ha and Shilling [36] explain, can accurately predict high-risk

AVCs locations using environmental variables combined with human population density data.

Bayesian modelling is commonly used to identify trends in data. Bayesian spatiotemporal
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models were applied to AVCs data from Minnesota in the US by Ashraf and Dey [37]. These
authors sought to identify specific area trends and locations where AVCs were increasing
or decreasing. The authors developed five models; one parametric spatiotemporal model
and four spatiotemporal models with a variety of interactions. The performance of these
models was evaluated by analysing data on deer-vehicle collisions in Minnesota between
2015 and 2019. Results showed that the parametric spatiotemporal model and spatiotem-
poral interaction model with type 1 interaction (between unstructured spatial and temporal
effect) were the most successful for model diagnostics and goodness of fit measures, mak-
ing them most suitable for future modelling of this type. Critical data, such as number of
animal crossings, is often not available and for large sections of roadway networks have low
AVCs counts. Gurumurthy et al. [38] implemented Bayesian hierarchical models to account
for seasonality issues across a large road network. This approach was validated with large
datasets, with the model accurately providing monthly seasonality variations in predicted
AVCs counts. Other modelling approaches, such as point pattern network models have also
demonstrated capacity to develop driving routes that mitigate AVCs risk. Researchers used
point patterns network structures to identify optimisation path selection [22]. This model
considers the optimal path selection to determine the safest path between point pairs. More
recently, researchers have explored the potential of using artificial intelligence (Al) and ad-
vance camera technology (multispectral imagery) to predict AVCs hotspots. The research
has demonstrated that Al-developed models were more accurate than current mathematical

modelling approaches [39].

While most research has used modelling to identify locations at risk of AVCs, some research
has examined the use of modelling to predict AVCs injury severity and collision costs. Random
parameters binary logit models have been employed to determine the likelihood of observing
deer on a road and vehicles striking a deer. A correlated random parameters ordered logit
model was then used to estimate the risk of injury severity resulting from the AVCs [40].
Researchers in Sweden use population dynamics models and econometric methods to predict
how species involvement in AVCs and the future costs of AVCs is likely to change [41]. Further
to this, modelling can be used for determining the optimal location for intervention (such as
VMS) placement. Austroads [42] provide an example of this as the Australian National Risk
Assessment Model (ANRAM) to calculate cost benefits of proposed sites. When historical crash
records are not available the risk assessment and predictions of crash numbers are applied
along with crash reduction factors to determine crash savings. This allows for comparison of

predicted site outcomes to be considered when choosing placement of items such as VMSs.

These findings demonstrate the modelling approaches that have been used to determine

factors contributing to AVCs as well as at-risk locations. Such knowledge is critical to the
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extent it helps with the identification of potential countermeasures. With this in mind, the next

section of this review discusses interventions aimed at addressing AVCs.

2.1.2.C. Interventions Aimed at Addressing Animal-Vehicle Collisions

A range of measures have been developed and implemented to reduce AVCs, with varying
degrees of success. Interventions have included signs, physical structures such as fences,
crossing structures that are useful for climbing animals such as possums and squirrels and
tunnels that are popular in Europe for amphibians and medium sized mammals. Road re-
flectors on roadside posts are used in Australia as a deterrent for animals as the reflectors
glow from vehicle headlights at nighttime and create a perceptual barrier [2]. These treat-
ments are also recommended by Austroads [43] as a countermeasure for motorcycle riding
hazards. Odour repellents have been used in the Czech Republic as an alternative to fencing
by applying them at regular heights (i.e., 80cm) on poles and it being placed there or used at
regular intervals [44]. Of particular relevance to the current project, technological solutions,
such as dynamic warning signs (or VMSs), are becoming more popular across the world.
Other measures mentioned by Borza, et al. [5] relate to improvements in road engineering
and maintenance, game management and driver education. Given the intent to develop and
evaluate dynamic real-time roadside messaging as part of the overall current project, focus

herein is upon warning signs and messaging as an intervention to reduce AVCs.
Warning Signs About Animal-Vehicle Collisions

Static warning signs represent a traditional intervention approach used to alert drivers to
risks they may encounter in the road environment. In the following reviews some researchers
have questioned the efficacy of these static signs in reducing AVCs, while others have sug-
gested that their versatility and cost-effectiveness mean they are a viable option in helping
to reduce AVCs.

Tryjanowski, et al. [45] reviewed evidence relating to the use and effectiveness of static
road warning signs and concluded that the main response elicited by a motorist to these
types of warning signs is merely recognition as opposed to motivating behaviour change. In
an interview with ABC news, Professor Darryl Jones from Griffith University stated that “They
make absolutely no difference to anything” [46]. Tryjanowski, et al. [45] suggest that further
research is required to enhance the effectiveness of such signage to extend beyond mere
recognition to ensure action is taken - whether that is to slow down or to monitor the road
environment more diligently. The SatMDT [1] which is employed in this project and described

in Section 4 of this review directly addresses this behaviour change aspect with respect to
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the development of targeted message content.

Tryjanowksi et al. [45] also noted that the effectiveness of these static warning signs can be
increased when a speed limit (reduction) is also set to accompany the warning. Crash data
show that AVCs are of increased severity at higher speeds [7]. Druta and Alden [47] found
that even a driver prepared for the prospect of an animal on road, may still hit an animal
if they are driving too fast. Quite simply, at a slower speed, drivers are more able to both
detect and avoid animals even within a relatively short detection distance. In his research
into reducing collisions with marine life, Dr Mark Boulet has found that as well as raising
awareness, signs must give clear instruction on what related action people should take [46].
In the case of reducing AVCs the action should be to drive more slowly [5, 7, 45]. Thus, it
seems gauging effectiveness of signage in reducing AVCs should take into account the extent

to which it promotes or encourages motorists to reduce their speed.

While static roadside signs may have a place as an intervention in helping to reduce AVCs
and have the benefit of being a relatively low-cost option, there have been recent calls to
implement more effective strategies to reduce AVCs (see [48]). Tryjanowski, et al. [45] suggest
that there had been a societal shift from a focus on protecting road users from AVCs to more
of an emphasis on protecting animals and especially the latter when the animals are rare
or native. It appears that this view is shared by administrative bodies and the public [45].
This shift is important to the extent that it provides some insight into potential messaging
content—that a focus more on welfare and protecting animals may be appropriate. We
revisit this latter aspect in Section 2.1.3.A of this review when discussing messaging content
design. In the next section, however, we review some of the evidence available regarding

the role of technology and messaging in reducing AVCs.
Technology and Warning Messaging About Animal-Vehicle Collisions

The variety of technological messaging options is constantly growing [49-51]. VMSs, which
are electronic signs that can be programmed to display different messages, can now be
integrated with other technology to cater to a range of situations as is the case with the
current project. Specifically, technology now enables VMSs to be connected to a detection
device (to detect presence of animals) and thus relay real time hazard warnings to a motorist.
Detection devices can now also send warnings and information to in-vehicle advanced driver

assistance systems that work on GPS.

Extending into the future and drawing upon the likes of connected vehicle technologies,
there is exploration of next generation (NG) RADSs. These systems would aim to identify

animals and assess threat levels for potential AVCs. It is proposed that these systems would
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Figure 2.3.: The Step approach to Message Design and Testing (SatMDT [1]).

provide the ability to display various warning levels to motorists rather than a uniform or
more general advice of there being a possible threat of AVCs [52]. The NG RADSs may also

use vehicle-to-infrastructure (V2I) communication to directly control vehicle speeds [52].

2.1.3 Messaging Design

This program of research will be underpinned by one of the most contemporary frameworks

in road safety messaging design and evaluation, the SatMDT [1], which is shown in Figure 2.3.

The SatMDT framework incorporates principles derived from social psychological theories
of behaviour prediction, attitude-behaviour relations, and persuasion. As Figure 2.3 shows,
the SatMDT comprises four steps: (1) getting to know the audience, (2) development of mes-
sage content, (3) concept testing, and (4) final message evaluation. The theoretical models
that inform the SatMDT include the Theory of Planned Behaviour (TPB [53]), The Elaboration
Likelihood Model [54], the Extended Parallel Process Model (EPPM [55]), and Social Learning
Theory [56]. Now well-established as a robust theoretical framework, the SatMDT has under-
pinned the development and/or evaluation of an array of messaging relating to various road
user behaviours (e.g., speeding and child pedestrian safety) and other road safety issues
including raising public awareness of connected vehicle technology [57]. The framework has
also shown its versatility in terms of informing the development of messaging to be delivered
via various media types (see [58] for a review of the SatMDT's application). Of relevance

to the current project, the framework has informed messages displayed on VMSs including
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highway VMSs [59] as well as portable roadside VMS trailers (e.g., [60]), with the portable

VMS trailer option to be the signage used in the current study.

Researchers have examined how to design signs to proactively improve visitor safety in
Australian national parks [61]. This study is noted to the extent that animal encounters could
be expected to be a part of visitor safety at national parks and, thus, insights garnered from
this study may assist roadside messaging design for messaging regarding animals on or
near the road. Consistent with the SatMDT, Saunders et al. [61] noted that it is important
to first understand the target audience, including an awareness of existing knowledge and
expectations. In addition, to understand individuals’ familiarity with potential risks, includ-
ing their perceptions of how likely and severe the risks could be, is important. Saunders et
al. [61] noted that graphical symbols within messages can positively influence individuals’
comprehension of warning signs. Moreover, they concluded that to ensure signs adequately
warn park users, the signage needed to be noticeable, easily encoded (absorbed and under-
stood quickly), located near the hazard, be credible, and describe the desired or expected
behaviour.

The subsequent section of this review focuses more on the content of roadside messaging.

2.1.3.A. Content Design for Road Warning Signs and Variable Message
Signs

Currently, no international standard exists regarding road sign design where such signs seek
to prevent AVCs. It appears many countries take different approaches, such as referring
to their own local, perhaps more charismatic species on warning signs [45]. While design
guidelines exist, such guidelines are for road signs more broadly. Aspects relating to these
guidelines are reviewed to the extent they may provide some insights pertinent to the devel-

opment of messaging content for the current project.
Traffic Signs

There are universal design considerations in the development of traffic signs worldwide.
For instance, it is important that images are legible from the specified distance and do not
distract drivers with unnecessary detail [62]. The size of the images used is equally important.
Small images may be more difficult to decipher from a distance while use of images that
are too large increases the reading difficulty of older drivers due to issues with text blurring,
particularly at night. Contrast of colour and brightness between the message components and

sign background should also be considered for optimising readability. Dewar and Pronin [62]
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suggest that the use of consistent sign models (i.e., the use of colours and shape for warning
or mandatory signs) is important to facilitate driver comprehension. It is also important to
consider whether the hazard or the consequence of an action should be included on the
sign, or if drivers should be told what they must or must not do, with consideration always

given to prioritising the simplification of signage content [61, 62].

A laboratory study, examining driver eye movement behaviours when encountering vari-
ous road traffic signs conducted in Croatia, found that signs must be clear and not require
significant mental load to efficiently derive meaning [63]. Research has been conducted in
Turkey regarding static traffic sign comprehension. This research examined local knowledge
of European Union signs to be installed as part of the European Union harmonisation process
[64]. As was highlighted in Babic, et al. [63]'s findings that driver understanding of traffic
signs improved with familiarity, Kirmizioglu and Tuydes-Yaman [64] found that signs similar
in design to existing signs are well known with high levels of understanding of sign meaning.
However, signs not widely recognised will require increased education to improve awareness
as a proportion of road users attributed an opposite meaning to the signs’ intended meaning.
As Kirmizioglu and Tuydes-Yaman [64] state, this could pose a significant risk, especially in
circumstances such as where a “No Overtaking” sign was installed, and some road users

understood it as “Overtaking Encouraged” so drove accordingly.

To understand how drivers comprehend traffic signs, a laboratory study was undertaken
in Spain by Mazén et al. [65]. Participants were presented with static signs and more dy-
namic VMSs which provided information on road conditions and routing options. The study
was conducted in two parts; comprehension and response times were assessed via recall of
time-limited displays, followed by a reading span test that assessed working memory. Signs
containing specific location details were more accurately recalled than those displaying gen-
eric information. Signs which identified the distance between incidents and the driver demon-
strated lower cognitive demand in participants. A reason for this, hypothesised by Mazén,
et al. [65], was that the structure and elements of the message promoted efficient extraction
of its meaning. The authors concluded that ensuring design consistency, and providing ad-
equate but not too much information, is essential in relaying information to drivers without

impeding their cognitive load.

Also in Spain, researchers used a driving simulator to examine if the current understand-
ing of reading capabilities (familiar and/or short words being read more quickly with less
cognitive load) apply to signage within the road environment [66]. Results showed the ad-
vantages of short words compared to long words, in terms of reading speed and reduced

cognitive load, were more pronounced when participants were reading road signs within the
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driving simulator. Such findings indicate that not only do those established understandings
of cognitive load and word type and length apply but may in fact be further emphasised

when travelling in the road environment.

Regarding dynamic VMSs, a field study conducted in Ohio, USA, examined how instantan-
eous feedback on driver behaviour in terms of compliance with pedestrian crossing yielding
requirements, influenced drivers’ behaviour. For this study, pedestrians using a pedestrian
crossing were provided with a sign (green “thank you for stopping”) to hold up if drivers
stopped while, if drivers did not stop, a pedestrian further down the road held up a pink
“please stop next time” sign. Researchers observed driver behaviour at the intervention site
as well as a downstream location [67]. When compared with baseline data, compliance at
pedestrian crossings increased significantly both at the treatment site and the downstream
site. Such findings suggest that feedback by other road users and simple targeted messaging
encourages drivers to improve compliance with road rules at pedestrian crossings. While not
involving instantaneous feedback, Kirmizioglu and Tuydes-Yaman [64]'s results support Nasar
[67]'s in terms of message framing. Just as the green and pink signs improved driver com-
pliance, participants in Kirmizioglu and Tuydes-Yaman [64]’s survey, reported higher recall
for positively framed than negatively framed messages. The results also found that most
participants who self-reported behaviour change also reported higher recall of the positively
framed messages despite believing that the negative messages would have a greater impact
on their behaviour. There is ongoing debate around the choice to display warning messages
constantly or only when directly applicable to a real-time hazard. The research in this review
demonstrates that current views and practice vary. The Queensland Government'’s policy
[68] on the display of information on VMSs allows for both philosophies, discretionary to
individual situations and requirements. As pointed out by Glendon and Lewis [60], human
factor principles necessitate only messages that require immediate behaviour change (e.g.,
speed choice) be displayed to minimise distraction and habituation. On the converse, the
Queensland Government policy also acknowledges the necessity to assure drivers that such
technology is not faulty and/or wasting tax payer money. The policy makes it clear that
the specific factors (e.g., geometry, congestion) for each VMS site must be considered in this
decision, with road user safety being the preliminary concern. Given the need for drivers
to be aware of the real-time nature of the warnings when a warning is to be displayed in
this current trial, there is evidence to suggest that messages triggered only when required
do assist in conveying the real-time nature of that message (see [59] whereby drivers only
received a message regarding speeding or tailgating when they were detected as engaging

in one of these behaviours; otherwise, the VMS signage displayed on highway gantries was
left blank).

Section 2.1: Animal-Vehicle Collisions and Road Safety (QUT)

21



Of integral consequence to the effectiveness of warning signs is the physical placement of
the sign in proximity to the hazard, in relation to allowing time/space for adequate behavi-
oural response. As explained by Glendon and Lewis [60], the stages of detection, reading,
comprehension and response to a VMS require time and distance which must be allowed
for when choosing a location. As an example, according to the Learn Drive Survive Team,
Australia [69], when travelling at 80 km per hour, a driver’s reaction distance is at least 33
metres. When combined with braking distance (in dry conditions) the total distance covered
from detection to a complete stop can be anything up from 69 metres. Factors such as road
geometry and the objectives of a particular research project combine in influencing decisions
regarding the optimum placement of VMSs. Schramm, et al. [59] conducted a field study
in South-East Queensland to evaluate the effect of VMS messages, displayed on highway
gantries, on driver behaviour change recorded not only at each of the individual VMS sites
(of which there were six; three northbound and three southbound on a ‘Blackspot section’ or
high crash section, of the Bruce Highway) as well as overall in terms of vehicles travelling
through the on-road study site. The VMSs were positioned at 10-kilometre intervals, with
speed monitoring devices (pneumatic tubes or induction loops) posited at 500 metres prior
to the sign (to determine baseline, non-message exposure behaviour of motorists) as well as
500 metres upstream from a sign, to determine longer term impacts of the messaging on
driver behaviour within a 90 km/h speed zoned road. These measurement distances before
and after the signs provided the means to determine the effects of the messaging in accord-
ance with the study’s research objectives which were to reduce travel speeds and increase
headway of the vehicles travelling through the test area. The signs were only activated and
thus displayed either a speeding or tailgating message if a motorist was detected engaging
in one of these behaviours. The aim was that if a motorist saw a message, ideally the effect
would then continue for some distance on the highway and not just at the sign; and hence
why the 500-metre follow-up of behaviour. Overall, the results confirmed a positive effect of
these VMS messaging in reducing travel speeds of vehicles travelling in their study site as well
as increases in vehicle headways (consistent with the purpose-devised messaging targeting
speeding and tailgating which were developed by project investigator [on this project also],

Lewis).

In another relatively recent project, three anti-speeding messages, were field tested for
their effects on speed behaviour using a roadside VMS ftrailer located on a suburban road
in Queensland [60]. The location was chosen based on Queensland Government crash data
listing sites of at least one serious (fatality or hospitalisation) speed-related crash within the
previous five years and suitability for installing the trailer-mounted VMSs and pneumatic

speed detection tubes on the road. Driver behaviour was recorded using pneumatic tubes
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at three locations including before (120 metres prior) and after the VMS (of which, after
was assessed at both 80 metres after, and then again at 310 metres after the VMS). As
noted earlier, the placement of the VMS and associated subsequent behavioural measures
(pneumatic tubes) in this study was intended to assess motorists’ baseline behaviour just
prior to being able to see the sign and then to compare that with what occurred at the
sign (after having some time to see and respond to the sign to reduce speeds if they were
indeed intending to slow down) and then again further down the road to see how long any
changes in behaviour were retained for. The design and thus distances of tube placement
was intentional and aligned with the research questions of this specific study. Unlike the
current project, this earlier project with roadside VMS was focused on the impact of the VMS
messaging on driver behaviour and of the messaging itself. In the current project, as well as
the VMS and the message it shows, there is also the added aspect of the messaging being a
real-time message about the recent detection of an animal (cassowary) near or on the road
in that study site. Thus, in the current project, the aspects influencing motorists” behaviour
may not be just the VMS and its messaging but also the prospect of seeing and actually

seeing an animal (cassowary) on or near the roadside.

In addition, in the Glendon and Lewis [60] portable VMS study (on impact of messaging on
motorists’ speeding behaviour) motorists coming from the opposite direction also had their
behaviour (speeds and headways) measured via bidirectional tubes. Thus, these oncoming
vehicles, not seeing the VMS message (rather just the back of a VMS trailer on the opposite
side of the road) functioned as a control group whereby baseline measures of this latter group
could be assessed throughout the test site and thus compared with those of the intervention
group travelling on the carriageway of the side on which the message was purposefully
situated to target. This aspect could be incorporated into the current project as well; however,
it must be kept in mind that the control group could have potentially also see the animal
(cassowary) that the sign is warning motorists about. Thus, any reductions in the control
group in the current study would need to take into account not just the fact that they are
not the intended recipients of the message on the VMS but also the possibility that they may
have already seen and responded to seeing an animal on or near the road. This aspect must
be borne in mind and highlights that in this study, the value of additional measures such as
on-road camera may be required beyond just pneumatic tubes as any reductions in speeds
of the motorists travelling in either direction could signal the sighting of an animal on or near
the road, the impact of the signage, or in some cases both these aspects (in the case of those

travelling in the direction in which the signage is positioned).

The NSW Government’s Road Transport Authority guidelines [70] to VMS placement contain

relevant information to the current study, that being the placement of signage (permanent and
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portable) in regional areas that alerts motorists to a hazard. According to these guidelines,
the recommended minimum distance between a VMS and a hazard, within an 80 - 90 km/h
speed zone where road geometry is considered “ideal” is 120 - 180 metres with approxim-
ately an extra 4 metres needed in rural areas. Further to this, factors such as road shoulders,
clear zones and even slight curves must be considered in the placement of portable VMS
systems. At installation, angled placement must be implemented to maximise oncoming mo-
torists” visibility and minimise potential glare. These aspects are all pertinent considerations

for this project.

The development of traffic signs is a complex endeavour involving consideration of a range
of aspects. Design features, including size, colour, contrast, legibility and placement combine
with message development considerations such as word structure and psychological framing
to achieve optimal effectiveness. While no one formula can be successful in all situations, the
preceding evidence has highlighted common themes of the need for uniformity/familiarity in

signage, the benefit of positively framed massaging, and keeping messaging simple.
Variable Message Sign Messaging Content Preferences and Understanding

Early work on VMS content design was conducted in the UK. A stated preference study
was conducted to understand drivers’ responses to VMS messaging [71]. Younger drivers and
female drivers reported being less likely to take alternate routes as advised by VMS. Also,
prior experience with alternate routes influenced the likelihood of detouring, with alternate
route use increasing as experience increased. VMSs displaying travel delay times rather
than total travel time were preferred by drivers. Drivers described the provision of vague
information (e.g., “long delays” or “delays likely”) as ambiguous and as estimates of what
such terms may mean, generated a varied array of time delay times. These estimations can
be further involved when additional information regarding the cause of the delay is provided
(e.g., crash, congestion, no additional information). As also reported in Section 2.1.3.B, VMS
messages containing tangible details of required or preferred behavioural options are more
likely to elicit more favourable responses from drivers. This evidence is consistent with the
construct in messaging design of response efficacy which essentially relates to the extent
that a message provides concrete or tangible strategies for a motorist to engage in. The
importance of this construct has been supported both theoretically with its inclusion in the
Extended Parallel Process Model (EPPM [55]) and, subsequently, the SatMDT framework (see
[11) as well as empirically where studies have shown that response efficacy both enhances
rates that individuals are likely to accept a message as well as reducing the extent to which

they may reject it [72].
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Further to this, a simulator study, with data supplemented by eye tracking recordings, was
used to investigate the effects of driver age and message layout on visual perception and
understanding of VMS messaging. The message design factors considered were the use of
all capitalised letters, only initial letters capitalised, as well as the use of familiar, unfamiliar
pictograms or no pictograms [73]. The results revealed that lettering format, as uppercase
or lowercase, did not impact on driver reading times. Cognition times were higher when
unfamiliar pictograms were presented, indicating that it was critical for pictograms to be
familiar to optimise understanding and minimise cognitive load [73]. The study also found
that older drivers had more difficulty perceiving the VMS messaging than younger drivers
[73]. Choices in colour use also played a significant role in drivers’ perceptions of the VMS

messages and reiterate the need to concept-test such options prior to use on-road (see [1]).

A field study conducted in France with an early VMS examined legibility and contrast char-
acteristics and found that VMS point size did not influence message legibility [74]. During
daylight, sign contrast was most critical to sign legibility. The authors found that increasing
contrast, until the calculated contrast value reached 8, increased recognition. Luminance was
most critical for night-time conditions. Excessive luminance has been found to be uncomfort-
able to the eyes, however such discomfort was found not to interfere with participants” ability
to comprehend the YVMS messaging. Study results were unable to determine a narrow range
when comfort and accuracy were optimised, with the authors recommending a luminance
range of 30 < L < 23cd /m? [74].

To examine the aspect of optimising drivers’ understanding of VMS messaging, research
was conducted in Iran to determine appropriate content in the case of tunnel emergency
notifications requiring drivers to evacuate the tunnel. A stated preference survey was used
to evaluate the use of text and pictograms and message presentation [75]. All messages
contained the words “STOP ENGINE; LEAVE TUNNEL" and these words were presented alone
or with an image and with or without flashing wigwags. The image included on the VMS was
one of the following: a standard green emergency exit symbol, the emergency exit symbol
in white, a yellow triangle with an exclamation mark, a standard no entry symbol (red circle
with a white bar in the centre). The signs either had the image positioned to the left or above
the text. The study revealed respondent preference was for the text combined with the green
exit symbol without wigwags [75]. The authors concluded that symbol familiarity may assist
driver understanding and preference and suggests, once again, the importance of keeping

messages simple.

Glendon and Lewis [60] completed an on-road field trial to evaluate motorists’ responses

to anti-speeding messaging displayed on portable roadside VMSs. The messages had been
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theoretically informed and thoroughly concept-tested prior to their use on-road. The results in
terms of demonstrated reductions in motorists’ speeds in response to some of the messaging
provided support for the value of theory in informing messaging content and the importance
of concept-testing messaging prior to on-road use. Further details of this study, as an on-road

evaluation study of messaging effectiveness, are described in Section 2.1.3.B.

The preceding review of evidence demonstrates that messaging displayed on VMSs should
include tangible and useful information and strategies as well as for such content to be clear,
succinct and, if feasible and relevant to do so, to implement familiar symbols to facilitate
efficient understanding. The importance of theory in developing content as well as the need

to ensure thorough piloting prior to use was highlighted.
Use of Text or Pictograms

Pictograms are becoming increasingly popular in road messaging content. Graphical rep-
resentations can be more universal than text for foreign-speaking visitors to a country and
for those with reading impairments. As the focus of the current program of research will
involve an on-road field test of the messaging and this on-road component is occurring in
a location (North Queensland) which is a popular destination for international tourists, this

aspect may likely be of particular significance.

Grace et al. [76] used a driving simulator to examine the effectiveness of word-based
versus image-based messages displayed on a warning sign that alerted drivers to the pres-
ence of large animals near a road in Florida, USA. The sign was connected to an RADS
similar to that being investigated for the current project. The effect of the RADS on collision
rate, driver speed and latency to brake was also investigated. N = 90 licenced drivers were
randomly assigned to a control group, word-based RADS or image-based RADS condition.
Participants were not informed of the study’s true purpose to avoid anticipatory behaviour
(expecting an animal to appear on the road). Results showed that drivers in both RADSs
conditions reduced their speed, braked earlier in response to the animal and were involved
in less AVCs. Of particular interest was the finding of a significant speed reduction at twilight,
when animal activity is known to increase. A mean speed reduction from 97 km/h in the con-
trol group to 89.5 km/h in the image-based group (7.5 km/h difference) was slightly larger
than the text-based condition and indicated optimum safety benefits for the image-based
RADS condition [76]. Image-based signs were associated with slightly better results than
word-based signs but the reductions in speed and other behaviours did not differ signific-
antly. Overall, the data collected indicates that the use of RADSs can reduce crash probability,

driver speed, and reaction time to brake, with image-based signage providing the optimum
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results albeit not significantly different to the text-based RADS option. To determine the most
appropriate images to display on VMSs, a study conducted by Er-hui et al. [77] in China
compared possible pictograms for five roads conditions (i.e., rain, fog, crosswind, snow, road
closure) that previously had not used any pictograms. Driver reported preferences were ob-
served for pictograms for messaging relating to all road conditions. While no differences
were found for sign preferences across age and gender, some differences were observed

between categories of years of driving experience [77].

Also in China, a driving simulator study explored drivers’ information threshold of graph-
ical VMSs based on visual perception characteristics of drivers. Participants were presented
text-only signs, simplified graphical signs, and graphical signs with text [51]. Unsurprisingly,
legibility distance decreased as sign information volume increased. Legibility speed and
subjective difficulty ratings also increased as sign complexity increased [51]. These results in-
dicate that easily identifiable pictograms may be the best type of traffic message for efficient

comprehension.

While the effects of roadside sign size, familiarity and format on driver performance in the
USA found that target identification was more accurate when less information was presented
on a sign (6 items versus 9 items) [78], research has also found that drivers were more
accurate when identifying text-based targets as opposed to pictogram targets. Within each
age group (young, middle-aged and elderly), driver performance did not significantly differ
based on the amount of information provided (6 or 9 panels), logo familiarity or sign format
(text or pictogram. However, Zahabi, et al. [78] note that elderly drivers were found to have

worse detection performance of both text and pictograms on signs than both other groups.

Another consideration when designing message content is the influence of various indi-
vidual differences beyond just aspects such as age and gender. In a driving simulator study
in Spain, Roca et al. [79] examined via two studies both how reading impairments such as
dyslexia may affect drivers’ capacity to comprehend VMS messages and if words or picto-
grams were more easily understood by drivers with a reading impairment. Both studies found
that drivers with dyslexia allocated more gazes at the traffic signs whether words or picto-
grams appeared, and which resulted in a reduction in speed control (higher speed variability).
Results for individuals’ comprehension of graphical VMS messages were also duplicated in
both studies with no difference identified between reading impaired and unimpaired drivers.
Roca, et al. [79] reported that drivers with reading impairments required more cognitive effort
and longer reading times when messages were presented in text format while Roca, et al.
[80] found that drivers with reading impairments demonstrated shorter legibility distances

compared with unimpaired driver, but reading accuracy was not affected. The similarities of
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these results suggest that pictograms may well be the best and safest option for VMS content

which is sensitive to motorists with some reading impairments.

2.1.3.B. Message Evaluation—Effect of Road Signs and Advanced

Messaging Systems on Motorists’ Perceptions and Behaviour

Multiple approaches, including self-report surveys, simulators, and field studies, have been
used to examine motorists’ responses to messaging approaches and, thus, to evaluate the
effects of such messaging-based interventions (see [1] and [60]). Of particular interest to
this review, given the initiative to be devised and evaluated within the overall project, was
examining the extent to which studies have shown that VMSs may influence motorists’ be-
haviour and, in particular, in terms of reducing travelling speeds and increasing monitoring

or vigilance of the road environment.
Driver Response to Signs (Perceptual and/or Behavioural)

As a road safety countermeasure, seminal work by Elliott [81] via the first ever meta-
analysis of road safety advertising campaigns, identified that road safety advertising and
messaging may seek to achieve increases in individuals’ awareness, motivate changes in

attitudes or future intentions, and/or ultimately change behaviours.

Regarding the study by Glendon and Lewis [60] cited earlier in this review (see Section
2.1.3.A) in which three anti-speeding messages were designed and then field tested for their
effects on speed behaviour using a roadside VMS ftrailer located on a suburban road in
Queensland, the results indicated that the proportion of road users exceeding the posted
speed limit were consistently lower when the anti-speeding VMSs were displayed. There
was also a residual effect, with a reduction in mean speeds and proportion of drivers ex-
ceeding the speed limit observed for the week following the removal of the VMS. None of
the three messages reduced vehicle mean speeds at night when compared to the control
period during. The effectiveness differed between the three messages and across time. Mes-
sage 1 (SPEEDING? / PENALTIES APPLY!!) and 2 (KEEP OUR STREETS SAFE / STAY WITHIN THE
LIMIT) had the greatest effect during school hours, followed by Message 1 and 3 (REDUCE
YOUR SPEED / KEEP YOUR FAMILY SAFE) during the day. While VMS anti-speeding messages
may not dramatically reduce speed selection of drivers, small reductions in speed and speed

variability can improve safety [60].

Recent work by Mohammadi, et al. [50] investigated motorists” beliefs about the effective-

ness of static AVCs warning signs in Iran. Results of a self-report survey revealed what was
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considered a somewhat self-perpetuating cycle in respondents’ beliefs and behaviours. A
general lack of trust in the effectiveness of warning signs was reportedly due to the behavi-
oural habits of a cohort of motorists who speed in the absence of cameras. When conditions
allow high-speed driving with no speed cameras, these motorists’ awareness of warning
signs seems to diminish. Roads that do not accompany warning signs see an increased ef-
fect. Consequently, as these behaviours are increasingly observed, more drivers lose faith in
the perceived effectiveness of warning signs and the more they too, may also ignore them.
The authors also reported, however, that although static warning signs have been shown to
be ineffective in decreasing driver speed, enhanced warning signs, or VMSs, have shown
some promising effects in reducing drivers’ speeds. Increasing the effectiveness of warning
signs can reduce the speed of vehicles and subsequent speed-related crashes. For instance,
a recent Canadian study reported reductions in deer-vehicle collisions as motorists’ reduced

speeds in response to the implementation of temporary YMSs rather than static signs [50].

The colour of a VMS sign and message lines can also influence individuals’ responses.
This effect was examined in a laboratory study conducted in Taiwan by Lai [82]. Participants
were shown a video of a drive within a static driving simulator, where four VMS messages
requiring a set behaviour (press brake pedal, press accelerator pedal, turn the steering wheel
to the left or turn it to the right) were edited into the video. Response times were significantly
impacted by sign colour schemes and the amount of information presented. Signs with two
colours, rather than one or three colours, had the faster response times and had higher
preference scores. The researchers posit that the drivers’ responses, and stated preferences,
were related to the use of colours to chunk information, where one colour was used to
provide information about the road situation and the second colour was used to provide
information on how to respond. Two linked VMSs with matched colour chunking messages
resulted in faster driver responses and higher levels of driver approval than a single line
message VMS. The increased response time for single line messages may be explained by
the longer message line (requiring longer scanning), while the increased response time for

three-line messages may be explained by the need for drivers to conduct chunking of text

[82].

A Polish investigation into driver response times in real-world driving conditions [83] found
that their research group of 15 participants of a range of ages and genders displayed an
average total reaction time of 0.68 seconds, with a standard deviation of 0.15 seconds. The
study consisted of free driving in a research area, performing any manoeuvres in any chosen
route to allow for focus on driving. The task of reacting to a red signal by shifting feet from
the accelerator pedal to the brake pedal, braking the vehicle and then continuing to drive

was tested under a range of conditions. The authors emphasised that although this study
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examined real-world driving conditions, no universal standard guide can be assigned to such

a concept due to the wide range of variables present in every driving/accident scenario.

Another important variable in eliciting an appropriate response to VMSs is message dura-
tion. lts effect on drivers’ understanding of VMS was explored by Dutta, et al. [84] in the USA.
The effect of two sign message duration levels were investigated, ranging from 2 seconds
to 4 seconds, as well as message repetition on drivers’ route choice. Drivers who received
the VMS twice (one repetition) demonstrated lower message miss rates (i.e., incorrect route
choice) and merged earlier than drivers who only viewed the message once. Duttq, et al.
[84] reported that drivers were observed pre-empting the information provided on the second
screen of a bi-phasic VMS, and concluded that, as well as being critical to ensure messaging
consistency, it is imperative that the first screen is not displayed for too long. It is also im-
portant to ensure VMS content is simple and cannot be obstructed by roadside hazards (e.g.,
high vehicles) which aligns with findings by others [51, 60, 66, 79, 85].

Finally, together with the visual considerations related to VMSs, message content has a
major effect on driver responses. For example, a field study conducted in France examined
the effect of message framing (loss-based or gain-based) on drivers’ subsequent actual speed
behaviour. Four anti-speed messages were developed, with gain- and loss-based messages
focusing on crash and fuel economy impacts of speed compliance behaviours (“respected
speed limit = less crashes”; “speed limit respected = less fuel consumption”; “exceeded
speed limit = more crashes”; and “exceeded speed limit = more fuel consumption”) [86].
A control group sample was achieved by a message which simply displayed the time of
day on the VMS. Speed reductions were observed in all sign conditions, with the greatest
speed reductions observed for the gain-framed messages. As stated by Kirmizioglu and
Tuydes-Yaman [64], positively-framed messages elicit higher recall and behaviour change

than negative messages.

Speed was also a dependent variable in a driving simulator study in ltaly that assessed
VMS comprehension, and the subsequent effect on driver behaviour. The research found that
when drivers do not understand the VMS information, vehicle speed is 5% slower compared
to when a driver understands the sign [87]. The study also examined driver accelerator
pressure. When drivers understood the sign, the pressure on the accelerator decreases when
approaching the sign and then increases once the driver has passed the sign. If the VMS is
not understood, the pressure on the pedal decreases on approach to the sign and continues
to decrease after the driver has passed the sign. Several authors reviewed in this paper have
mentioned the safety issue of unstable speed control. In this case, the disparity in speed

control between drivers who do and do not understand displayed messages is the safety
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concern as it may result in traffic flow disruption and crashes.

The subsequent studies relate to VMSs and impacts on motorists’ speeds in response in
relation to some specific contexts. These studies are reviewed to the extent that they still
relate to the use of VMSs on-road and with a specific intent to motivate perceptual and/or

behavioural change among motorists.

First, regarding VMSs displaying route guidance or delay notification information. Early
research conducted in the Netherlands examined how radio broadcasts and VMS information
influenced driver route choice behaviour. The findings indicate that drivers were more likely to
be influenced to make route modifications based on VMS information than radio broadcasts,
with female drivers being less likely to be influenced by such traffic information to take a
different route [88]. A field study conducted in Norway investigated the effects of VMS route
guidance on driver behaviour, with data collected on speed, braking behaviour and route
choice [89]. This study found that there was high compliance with the VMS messaging, in
that every driver complied with the instruction to change route to avoid a closed highway
section, with every fifth driver following the detour directions while the remainder made
alternate route changes. This behaviour is likely influenced by local knowledge with regards
the shortest detour, as demonstrated in the Emmerik et al. [88] study. The study also showed
a significant reduction in speed as vehicles approached the VMS when the detour messaging
was active. It was noted the heavy braking may result in an increase in risk of rear-end
collisions [89]. Jing, et al. [90] also reported an increased risk of rear-end collisions relating
to VMS complexity. VMSs requiring higher mental workload resulted in speed fluctuations

that can be perceived as an increased safety risk.

Second, regarding YMS messaging implemented to advise motorists of upcoming road
works. Researchers in Qatar examined the use of animations on VMSs at road work zones by
monitoring participants in a driving simulator. Comparison of behaviour responses between
static and animated VMS road signs indicating work zone speed limits or lane merging beha-
viours was recorded. Animated VMS signs resulted in a significant reduction in driver travel
speeds and resulted in earlier merging behaviours. Drivers were also observed to be more
likely to maintain larger headways [?1]. Driver behaviours in response to remote stop-slow
controls at regional roadworks zones were evaluated by researchers in Queensland. The field
study collected driver behaviours and attitudes. Driving behaviours, including compliance,
stopping behaviour, travel speed and deceleration profile, were assessed from pneumatic
tubes and video recordings [92]. Attitudinal data was collected through an intercept sur-
vey. Three traffic lights (red-amber-green light combination, red-amber combination, and

red-amber arrow combination) and one static sign combinations were trialled. Compliance
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rates were high for all four remote stop-slow devices however, drivers had higher approach
speeds, increased approach speed variability and faster deceleration rates when compared
to roadworker controlled stop-slow control. Survey findings indicated a lack of driver un-
derstanding of new light combinations (both red-amber combinations), with drivers unsure
about the sign meaning, given that amber lights do not indicate to proceed after stopped at

standard traffic lights as they were in this study [92].

Third, studies have been conducted to evaluate the effectiveness of VMSs when used to
display messages about potential increased rear-end crash risk in a particular location. A
field study was conducted in Iran to evaluate the effects of providing drivers with information
regarding rear-end collision risk where such risk was advised as being of one of three levels—
low, medium, or high [93]. The presentation of the three risk levels to drivers resulted in
different driver responses, none of which found a relationship between speed and headway.
The effect of messages indicating the risk of rear-end collision was low resulted in drivers in
the middle and slow lane increasing driving speed at night, and never resulted in a reduction
in mean speed [93]. A medium risk message also resulted in an increased mean speed,
although not to the same extent as the “low” risk message. When drivers were presented
with a “high” risk message, mean speeds were significantly lower for all time-of-day options
as well as vehicle lane conditions except for the slow lane at night when there was no
significant change [93]. Risk compensatory behaviours present a road safety problem, with
this research suggesting there is a base level of risk drivers are willing to tolerate, and they

will increase engagement in risky behaviours to ensure that is met.

Finally, VMSs have been used around the world to advise of inclement weather conditions
to alert motorists of changing risks on-road. In a field study conducted in Finland, the effect-
iveness of VMS messaging displaying a warning about slippery roads was examined in terms
of their influence on driver behaviour [94]. Mean reductions in traffic speed of 1-2 km/h were
reported in response to the messaging. When drivers were presented with information re-
garding a recommended minimum headway, the number of short headways observed were
reduced. An intercept survey was also conducted for drivers who were presented with the
minimum headway sign. In addition to the observed behaviour modifications, the survey
findings revealed a valuable road safety contribution attributable to the messaging. Spe-
cifically, drivers reported that the signs refocussed their attention to look for cues on the
potential road condition hazard, resulting in them initiating road slipperiness testing, and en-
gage in careful passing behaviours [94]. This attentional refocus and increased vigilance is

also important for reducing AVCs and a goal of messaging in the current project.
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Evaluations of Interventions Addressing AVCs

There are a range of interventions that may be implemented in efforts to address AVCs.
To provide a holistic view of how AVCs can be addressed, a sample of these are reviewed in
this section along with evidence relating to their effectiveness. However, given the focus on
technology and messaging intervention being devised and tested in this project, we start with

reviewing evidence about road side messaging used as a means to try and prevent AVCs.
Warning Signs

Warning signs demonstrate a traditional method of communicating expectations and haz-
ards in the road environment. Early approaches were to install static warning signs. In FNQ,
huge cassowary warning signs are located on the roadside as well as the road surface. As
mentioned in Section 2.1.2.C, it has been found that static warning signs elicit barely more
than recognition by many drivers and high levels of signage are known to lead to habitu-
ation which results in moderating their influence over drivers. In their guidelines for minimum
signal sight distance, Mokkapati and Hawkins [95] explain that, to maximise effectiveness of
warning signs, they should be placed close to the location where the warning applies, and
drivers are required to initiate a behavioural response. This effect was demonstrated by
Winnett and Wheeler [96] who conducted a large-scale study of the effectiveness of over 60
installations in a range of contexts across the UK and found that the largest speed reductions
occurred close to signs. Research conducted in Utah investigated strategies to improve the
performance of static animal crossing warning signs [48] also supports this guideline. The
study found that a very small proportion (2%) of AVCs occurred within the recognition dis-
tance, of 300 feet (91.4m) in Utah, of these crossing signs. However, routes with high numbers
of warning signs had a lower number of AVCs per mile indicating that repeated reminders
raised drivers’ awareness and vigilance in general. While static signs have a place in redu-
cing AVCs as a low-cost mitigation measure, the authors recommended the implementation

of more efficient and effective measures for a more significant reduction.

As technology has improved, and associated costs decrease, warning signs have become
more proactive. Detection systems are used to support the direction of targeted warnings to
drivers. Early research was conducted in North America. Initially, beam-break technologies
were used to detect animals and provide driver warnings via VMSs. Data collected by the
system, including vehicle speeds and traffic volume, was recorded in Northern California for
10 months. The system was designed to be active (with LED warning messages illuminated)
only when an animal was detected [97]. This system was found to reduce mean vehicle

speeds, when illuminated, by 5 km/h for the 7.5 months of the study, compared to the
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preceding 2.5 month control period. In southern Sweden, a study was carried out on a VMS
located in close proximity to an at-grade fauna gate where animals cross the highway. These
gates are 30 m wide openings in wildlife roadside fencing to focus animal crossing points
while minimising population fragmentation. VMSs alert drivers when animals are detected
and tracked (by a system that utilises three heat cameras, two radar cameras and two infrared
cameras) within the at-grade fauna gate. During a 12-month period, 326 wildlife crossing
events were recorded. While data was only collected from one location, an AVCs reduction of
66% was observed. This preliminary data suggests this is an effective approach for reducing
collisions while maintaining habitat connectivity [98]. A different detection system, using
radar (specifically targeting moose-involved AVCs), was used in Canada. This radar system,
a 360°-radar scanning system, was installed on a highway segment in Alberta, Canada [99].
The system was demonstrated to reliably identify large animals, track their movements and
activate a roadside beacon (specifically, flashing amber lights) to provide advanced warning
to drivers. A preliminary review of driver behaviours found that when the warning beacon
was activated, vehicle speeds reduced by approximately 15% during all times of day. This
reflects an approximate 16 km/h reduction in speed. Further work was not completed to
evaluate the effect on AVCs within the monitored road section. The similarity between the
current study and this evaluation suggests that the findings of this study could supplement
Mukheriee et al.'s work [99].

In a setting with comparisons to the current study, dynamic animal warning signs, that were
installed to reduce panther-involved AVCs, were evaluated in Florida [100]. Placement of the
signs was informed by roadkill data to maximise their impact. The proxy of vehicle speeds
was used to determine the effectiveness of active warning signs on reducing AVCs. Traffic
volumes vary significantly between tourist season and off-season, as does the roadside
activity of large mammal species. During tourist season, where there is higher mammal
activity, there was a significant reduction in vehicle speeds when the dynamic warning sign
was active (i.e., messaging about an animal being detected in the road environment). The
reduction in vehicle speed during tourist season is critical, given the higher vehicle speeds
during this season, combined with greater traffic volumes and higher animal activity. This
finding is promising for the current study due to the similar variables involved (i.e., tourist
speed impact and animal activity.) Also of interest to the current study was the comparison of
driving patterns between tourist and off-season when, it is assumed, traffic comprises mostly
local residents. While significant speed reductions were noted in response to the flashing
signs in tourist season, the overall mean speeds were lower in the off-season. The authors
theorised the reason for this was that locals know to always drive more slowly due to possible
animal collisions and therefore, do not need to reduce their speed to the same degree as
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tourists who are not conscious of the risk until warned. While further work is required to
determine the flow-on impact on AVCs, successful speed reduction in such environments is a

positive outcome.

Driver behavioural responses to road safety messages are now also being assessed in driv-
ing simulators. A computer-animated simulator study examined driver behavioural responses
to a range of situations on a 90 km/h road in Sweden [101]. The situations assessed, by way
of vehicle speed and deceleration metrics, in forest or open landscapes, with or without a
wildlife fence were: 1) simulated moose encounter (by way of artistic impression and cut-out
figures, 2) automatic speed camera, 3) wildlife warning sign, and 4) a radio message. Ex-
periencing a moose through the simulated drive had the greatest speed reduction effect and
the largest deceleration behaviour, with reductions occurring early in an open landscape and
lowest passing velocity. Smaller decelerations were observed when the moose was observed
on a road with a wildlife fence. Speed cameras resulted in increased relative speeds before
and after being passed suggesting relatively no longer-term effects beyond having seen the
camera. The authors hypothesised that these were due to the mandatory forewarning of a
speed camera, via an E24 sign, applicable in Sweden and then the desire to recoup what
was perceived as time lost while driving at a reduced speed past the camera. In contrast,
the most effective countermeasures at reducing vehicle speeds were the more novel treat-
ments of simulated moose encounters, followed by radio messages. Further examination is
needed to understand the degree of influence their novelty had on these results and if time
and habituation would decrease their relative effectiveness. In the meantime, Jagerbrand
and Antonson [101] suggest that moose decoys or artwork observable by drivers may have

a speed reducing effect on drivers.

In line with the objective of this project being the development of messaging intending
to reduce and prevent AVCs, the preceding review focussed on communication of AVCs risk
as an intervention. There are many more approaches used to minimise motorists’ risk of
AVCs. Studies have examined the effect of interventions on wildlife crossing behaviours and
risk of wildlife mortality. Given that these approaches are designed to eliminate AVCs risk,
limited work has been conducted to examine their effects on crash or human injury risk.
Investigations have explored the impact of various interventions on a wide range of species,
some of this evidence is reviewed in the subsequent section for the sake of completion and

to highlight that interventions intended to reduce AVCs are varied and numerous.

Physical Interventions (e.g., fences, tunnels) Physical interventions separate fauna from
road hazards, reducing the risk of AVCs. It is difficult to retain wildlife population connectivity

when installing extensive roadside fencing, with an additional disadvantage of significant fin-
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Figure 2.4.: Jumpout ramp, Highway 1010, San Luis Obispo County, California [102].

ancial costs to fully fencing roadways. In their Cassowary Conservation Management Plan,
the Queensland TMR [8] describe best practice as using physical interventions to separate
fauna from roads in conjunction with alternative crossings to prevent population fragmenta-

tion.

Researchers in Portugal used statistical modelling to assess the effectiveness of partial
roadside fencing in reducing Martens’ (small, weasle-like animals) involvement in AVCs [29].
Modelling demonstrated efficacy of fencing for mitigating the risk of AVCs, with higher reduc-
tions in roadkill compared with passages. Even partial fencing of roadways (between 25%
and 7% of roadway length) was shown to reduce Marten’s roadkill while delivering the addi-
tional advantage of reducing genetic differentiation (or genetic isolation) through population
fragmentation. Field work conducted in the US found that the use of underpasses by large
animals was not influenced by the presence or absence of fencing but primarily by crossing
structure type (various widths and heights) and location (e.g., isolated from human activity

or not, nearby habitat, wildlife population density) [25].

The effectiveness of AVCs mitigation structures (jumpout ramps as shown in Figure 2.4,
overpass, underpass, fence) on AVCs was examined in a long-term study in Alberta, Canada
[103]. Average annual daily traffic on the road segment increased between 1983 and 2018,
and in the same period observations at mitigation structures found that large ungulate counts
increased while small ungulate counts decreased (unrelated to local population observations).
Mitigation structures were installed in 1999 and 2004, with a significant reduction in AVCs
observed from 2004 onwards. One potential limitation of the study design was the reliance
on official crash data, as this is likely to underreport collisions that are fatal for wildlife but
result in minimal damage to vehicles or humans. As the authors note, an added advantage
of employing appropriate mitigation measures for a given environment is the potential to

further reduce AVCs and improve habitat connectivity.
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Researchers in Brazil examined the use of unfenced highway underpasses by lowland
tapirs and other medium and large mammals [104]. The study found that mammal species
use of crossing structures (culverts and cattle boxes) differed by species type, with some
species only using specific structures (river otters and water opossums only used culverts,
and wild canids and felids were only recorded in cattle boxes while other species (e.g., ocelot,
giant anteater, crag-eating racoon and lowland tapir) used both structures. Abra, et al. [104]
pose that the costs associated at minimising the impact on the ecology are minimised by
utilising structures that are already built, and maintained, to ensure mammal mobility and
reducing population fragmentation. There are several large culverts installed around FNQ as
the cassowary is considered a large animal. According to the TMR [8], bridges and viaducts
are thought to be most suitable for facilitating cassowary movement due to their open and

natural designs. Evaluation of their effectiveness has not been found in this literature review.

Other Interventions A range of alternative interventions have been ftrialled to reduce
cassowary-vehicle collisions in FNQ including speed bumps and road surface markings. No
information in terms of the effects of such interventions was able to be located for reporting
in this review. Research has also examined the effectiveness of other novel interventions such
as traffic calming interventions [105], odour repellants [44, 106], daylight savings time [107],
acoustic warning systems [108, 109] and warning reflector systems [19]. As noted previously,
these other interventions have been briefly noted herein for the sake of completion and to
highlight the extent to which efforts have been varied and numerous in attempts to address

and prevent AVCs.

2.1.4 Concluding Comments

AVCs are associated with substantial costs to individuals, communities, and the environment
worldwide. In countries such as Australia, many native and protected animals, such as the
southern cassowary, are particularly vulnerable [2]. Despite the implementation of a variety
of countermeasures to minimise cassowary-vehicle collisions, fatalities from these collisions
continue to factor into the threat of the species’ subsistence as well as road safety for all

travelling in areas where cassowaries reside.

This review of current research highlights that vehicle speed is the primary factor of in-
fluence that countermeasures must address to reduce AVCs. With increased speed comes
decreased ability to monitor the roadside environment and handle unexpected driving situ-
ations (i.e., think and respond in a timely manner for the safest outcome) [2, 4, 5,7, 27, 45].

Speed reduction warnings have traditionally been communicated through static signage and
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road markings [105] which carry the risk of habituation and loss of effectiveness on drivers.
VMSs are a novel way to communicate targeted messages to drivers and have been shown

to yield more favourable results in achieving driver compliance than previous methods [50,
97, 1011.

The overall objective of this project was to develop, and field test a system for detecting
large animals (namely cassowaries) on the roadside that prompts a VMS alert to motorists
providing advanced warning of the animal being on or near the road and, thus, warning of
a potential hazard. Consequently, the focus of this review has been particularly upon the
development and evaluation of messaging strategies and, in particular, messaging displayed
on roadside VMSs. Development of the messaging in this project will be underpinned by
the SatMDT [1], which incorporates principles derived from social psychological theories of
behaviour prediction, attitude-behaviour relations, and persuasion. The intent of messaging
developed for use in the trial areas (and thus evaluated in this project) is to encourage
motorists to slow down and increase their vigilance in monitoring for animals on and around
the roads. Checking for inadvertent effects such as immediate stopping on the roadway also

need to be examined as such behaviours could negatively impact road safety.

Currently, no international standard exists regarding road sign design where such signs
seek to prevent AVCs [45] and while Australia implements standards on signage and its
use, government responsibilities for road safety vary across jurisdictions. Roads signs are
regulated by each state’s government but standardised overall [110]. Trends in the existing
research indicate that such VMS messaging should be as concise as practical to expedite
understanding, using a minimum number of colours, short, words and no unnecessary in-
formation [63, 65, 66]. Targeted and positively-framed messaging is shown to elicit higher
behaviour change, while clear instructions as to what the alternative behaviour should be
is imperative [46, 64, 67]. In some cases, the use of images shows some beneficial effects
relative to text-only but one study (relating to warnings about animals on or near road) found
no significant benefit in use of images relative to text-only messages [76]. Familiar and iden-
tifiable images have achieved higher comprehension efficiency [51, 64, 79, 80]. There are
recommended guides for the placement of VMSs based on factors such as distance from
hazard, historic data of crashes, animal activity and roadkill, road geometry and facilities.
The distance of tools to measure motorist behaviour show similar considerations and also
identify the important role played by research questions in influencing placement of such
measures as pneumatic tubes and induction loops (see [59, 60]). Appreciably, given such
aspects can vary across studies, among some of the more consistent aspects to consider are

human reaction time to factor in time it takes to see, comprehend, and react to a message.
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This research will address a gap in the literature addressing AVCs with large, flightless
birds (particularly cassowaries) and related countermeasures. While these reviews indicate
that the use of an RADS such as proposed for this project can reduce crash probability, driver
speed, and latency to brake [76] in a range of settings, this research will provide data for

Australia-specific conditions and unique species to enrich overall knowledge.

2.2. Roadside Animal Detection Systems (USYD)

2.2.1 Introduction

In response to the rising incidents of AVCs, recent years have seen a significant increase in
research efforts and development of commercial solutions to mitigate AVCs. The focus has
primarily been on RADSs and other systems with similar functions. These tools are not just
for detecting animals; they play an crucial role in alerting drivers in real-time, allowing them
to adjust their driving and avoid potential collisions. By doing so, they contribute significantly

to road safety and the preservation of wildlife.

To understand the landscape of existing solutions, we explored research papers, case stud-
ies, and existing products to understand their strengths, limitations, and areas of application.
Our focus is particularly on systems that have shown effectiveness in challenging conditions,

such as during nighttime or in rainy weather.

The rest of this section is organised as follows. Section 2.2.2 provides a comprehensive
review of existing RADSs in the research and commercial spaces. Section 2.2.3 compares dif-
ferent sensor modalities, and Section 2.2.4 provides details on machine learning approaches
that are often considered for animal detection. Section 2.2.5 presents a review of current and

past field trials. Lastly, the conclusions are drawn in Section 2.2.6.

2.2.2 Existing Systems

As human infrastructure and wildlife habitats become increasingly intertwined, the need for
advanced animal detection systems on roadsides has become more important. These sys-
tems aim not only to protect the diverse fauna but also to ensure the safety of motorists. In

this section, we provide detail on existing RADSs that have made progress in this domain.
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2.2.2.A. CVEDIA-RT

CVEDIA-RT [111] is an Al inference engine designed for developers and integrators, using
synthetic data for training its animal detection algorithms. Instead of relying on traditional
methods of data collection, CVEDIA-RT generates data with 3D models. This technique, similar
to animation processes, allows for faster and more flexible data generation/collection. The 3D
models provide intricate details about objects, allowing for a more nuanced understanding
and visualisation by computers. While the benefits of synthetic data, such as speed and
flexibility, are evident, there is a broader conversation in the scientific community about its

potential impact on Al bias, privacy, and overall accuracy compared to real-world data.

2.2.2.B. Roadside Animal Detection System on U.S. 41

The RADS situated on U.S. 41 [112] exemplifies the fusion of technological innovation with eco-
logical consciousness. Harnessing solar energy, it employs sensors to swiftly notify drivers
when large fauna approach the roadway. When such wildlife is identified, the system trig-
gers intense, blinking LED lights on several cautionary signs, guiding drivers to proceed with
vigilance. Structurally, the system incorporates two infrared sensor arrays, positioned in par-
allel on both sides of the road, cumulatively spanning 2.1 km. Positioned 45 cm above the
ground, these sensors are fine-tuned to recognise a wide variety of species. Including anim-
als such as the Florida panther and the bobcat, the system offers comprehensive detection
capabilities. lts primary aim is to reduce vehicular collisions with animals, safeguarding the
area’s diverse wildlife. This not only contribute to road safety but also plays a pivotal role
in conserving the region’s biodiversity. However, while the system’s advantages are clear
in terms of safety and conservation, potential challenges might include maintenance of the
vast sensor network, ensuring consistent solar power supply, and the system’s effectiveness

during adverse weather conditions.

2.2.2.C. ClearWay

ClearWay [113] is a leader in radar-based RADS. When an animal, particularly those larger
than a small dog, ventures close to the road, ClearWay activates the electric roadside signs.
This immediate response ensures that drivers are not only alerted to the potential threat but
also remain consistently vigilant. One of ClearWay's standout features is its ability to track
the direction in which an animal is moving, offering drivers a clearer picture of the potential

hazard. Moreover, by assessing the potential threat level of the detected wildlife, ClearWay
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provides a more nuanced alert system, ensuring that drivers are adequately informed and
can respond appropriately. However, while the system boasts several advantages, potential
challenges include its ability to differentiate between varying animal sizes accurately, its

effectiveness in different weather conditions, and the maintenance of the radar system.

2.2.2.D. The PATH Animal Warning System (PAWS)

In 2009, Caltrans, backed by the US Department of Transportation, initiated the Partners for
Advanced Transportation Technology (PATH) Animal Warning System (PAWS) on a stretch of
State Route 3 near Fort Jones in the Scott Valley area of Siskiyou County [114]. This particular
site was selected due to its infamy as a hotspot for black-tailed deer accidents, making it
one of the state’s most perilous zones for such incidents. The innovative PAWS system utilises
microwave beams as its primary detection mechanism. When a large animal, such as a
deer, intersects these beams, the system is triggered, sending a prompt signal that activates
illuminated warning signs positioned on both sides of the highway. This immediate visual
alert serves to warn drivers of the impending danger, allowing them to adjust their speed or
be more vigilant. The advantages of the PAWS system are manifold. Its use of microwave
beams ensures a high degree of accuracy in animal detection, reducing the chances of false
alarms. The immediate activation of warning signs provides real-time alerts, which can be
crucial in preventing accidents. Furthermore, by focusing on areas with a high incidence
of AVCs, the system addresses the problem at its most critical points. However, there are
potential challenges to consider. The system'’s reliance on microwave beams might make it
susceptible to interference or malfunctions in adverse weather conditions. Additionally, the
installation and maintenance of such advanced technology could entail higher costs. Lastly,
while the system is adept at detecting large animals, smaller animals that might still pose a

risk to drivers might not be detected as efficiently.

2.2.2.E. The Thermographic Wildlife Detection System

A recent research paper presented an innovative method for detecting wildlife near roads at
night using thermographic imagery [115]. This approach is especially effective in bolstering
vehicle safety during the dark hours. The study introduced a smart detection system that
seamlessly integrates the Histogram of Oriented Gradients (HOG) technique with a Convo-
lutional Neural Network (CNN). To assess its performance, the system was benchmarked
against multiple CNN architectures, including the basic CNN and the VGGIé-based CNN, as

well as several machine learning algorithms such as support vector machines (SVMs), ran-
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dom forest (RF), decision tree (DT), linear regression (LR), and Gaussian naive Bayes (GNB).
The system was evaluated using real-world thermal images of wild deer from San Antonio,
TX, USA. Encouragingly, the HOG-CNN blend achieved a commendable detection accuracy
rate of around 91% for wild deer near roads, outperforming other algorithms in the test.
However, the system does have its constraints, notably its exclusive operation during night-
time and the limited datasets used for training (854 images) and testing (214 images) the

deep learning model [116] [117].

2.2.2.F. Virtual Fencing

The Virtual Fencing system is an innovative roadside solution designed to prevent animal-
related accidents [118, 119]. Activated by the headlights of approaching vehicles, it emits a
combination of sound and flashing blue and yellow LED lights [118, 119]. This dual alert
mechanism aims to warn and deter animals from the road, reducing their startling effect.
Strategically placed at 25-metre intervals on alternating sides of the road, these devices
create a sequential “virtual fence” as vehicles pass. A prominent device produced by iPTE
Traffic Solutions Ltd. [119] in Austria is solar-powered and crafted to establish a virtual fence
alongside roads. It functions from evening until morning, focusing on crepuscular and noc-
turnal creatures. This device features an inbuilt light sensor that senses an oncoming vehicle's
headlight intensity at a benchmark of 150 lux, initiating both visual and auditory alerts. Ac-
cording to the manufacturer, the emitted sound captures the animals’ focus, and the flashing
illumination causes discomfort, prompting them to move away from the road area. However,
there are some limitations. The system’s reliance on vehicle headlights might pose challenges
in certain conditions. The effectiveness during extreme weather remains uncertain, and the
fixed 25-metre spacing may not be optimal for all scenarios. Lastly, its primary utility is

during nighttime, potentially leaving daytime incidents less addressed.

2.2.2.G. The Buried Cable Roadside Animal Detection System

The Buried Cable RADS [120] represents a recent approach to mitigating roadkill incidents in-
volving large and medium-sized animals. Embedded beneath the road’s surface, this system
employs a 300-m-long dual-cable sensor that actively monitors animal movements. When
animals cross over or near these cables, their presence perturbs an invisible electromagnetic
detection field generated around them. This disturbance prompts the system'’s central pro-
cessor unit to sound an alarm, simultaneously pinpointing the exact location of the intrusion.

The detection process is nuanced, relying on criteria such as the animal’s conductivity, size,
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and movement patterns. The system can discern multiple animals crossing at once, ensuring
a comprehensive monitoring scope. lts efficacy was put to the test on the Virginia Smart
Road, a location frequented by large wild animals like deer and bear, and the results were
promising. The system is further fine-tuned in their more recent work [121] by modifying the
processor’s configuration settings. A detection threshold of 70 dB was set for the entire cable

length, considering the traffic volume of the selected road section.

The Buried Cable RADS offers several notable advantages. Its high precision ensures accur-
ate location tracking of detected animals, providing a reliable means to anticipate potential
roadkill incidents. The system’s ability to detect multiple animals crossing simultaneously
enhances its efficiency, ensuring a broad monitoring scope. Furthermore, its underground
placement means it's unobtrusive, preserving the natural landscape and avoiding visual dis-
turbances. However, there are accompanying challenges. The installation process can be
complex, potentially requiring extensive roadwork that could disrupt traffic and the environ-
ment. Maintenance might also pose difficulties due to the system'’s buried nature, complicat-
ing routine checks and repairs. Additionally, its specificity in detecting larger animals based
on conductivity could mean smaller animals or those with minimal conductivity might go

undetected, leaving some roadkill risks unmitigated.

2.2.2.H. Remarks

It is important to acknowledge that there is limited data available for evaluating the road
safety benefits achieved from these systems. Specific quantifiable outcomes and statistical
analyses reflecting the reduction in AVCs and enhancement of road safety are not extensively
documented in the available literature. Furthermore, there is a lack of commentary on the
broader adoption of these RADSs beyond the initial trials. The scalability and integration of
these technologies into widespread use, their adaptability to varied geographic and climatic

conditions, and their effectiveness over extended periods warrant further exploration.

We recognise that the unavailability of this information could be attributed to several factors,
including the nascent stage of these technologies, constraints in data collection, or limited
scope of the initial studies and trials. Future research in this domain could benefit from longit-
udinal studies that not only assess the immediate impact of these detection systems but also
evaluate their long-term efficacy, sustainability, and adaptability. Comprehensive analyses
that include varied metrics such as the reduction in collision rates, wildlife preservation statist-
ics, and cost-effectiveness will contribute to a more holistic understanding of these systems’

value and potential for broader implementation.
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2.2.3 Sensors

The challenge of detecting large animals near or on roads is complex, and no single sensor
can address all scenarios effectively. Different environments, animal behaviours, and road
conditions demand different detection methodologies. For instance, while some sensors excel
in dense forests, others might be more suited for open terrain. The size, speed, and habits of
the animals to detect also play a key role in determining the most effective detection method.
As a result, a diverse range of sensor technologies has been developed and deployed to
tackle this issue. Each sensor type, from Global Positioning System (GPS) collars to infrared
cameras, offers unique advantages and is tailored to specific detection challenges, ensuring

that large animals are detected promptly and accurately to prevent potential AVCs.

2.2.3.A. GPS Collars

GPS collars are wearable devices that transmit real-time location data, primarily used to
track animals’ migration patterns and habitat preferences [122-124]. They offer a detailed
insight info animal movements, proving invaluable for conservation efforts, especially when
monitoring endangered species. Additionally, these collars can be integrated with other
sensors, providing a holistic view of animal behaviour and movements. However, they come
with their set of challenges. The bulkiness of some collars can interfere with the animal’s
natural behaviour. Moreover, they often have a limited battery life, which can restrict long-
term monitoring. In our case, it is very expensive to equip wild large animals with GPS
collars. This financial aspect makes deploying them on a large scale particularly challenging

and demands significant resources.

2.2.3.B. RFID

RFID tags, or Radio Frequency Identification tags, are primarily used in livestock management,
offering a unique identification for each animal [125, 126]. These tags are durable and require
minimal maintenance, making them ideal for long-term animal studies and efficient herd
management. Their ability to store individual health, vaccination, and breeding details is a
significant advantage. However, their range is limited. For data collection, animals need to
be in proximity to scanners, which means they don't offer real-time location or behaviour
tracking like some other sensors. Similar to GPS collars, in our case, it is very expensive to
place RFID tags on every wild large animal. This cost factor can be a significant constraint

when considering large-scale deployments.
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2.2.3.C. Near-Infrared Cameras

Near-Infrared (NIR) cameras are designed to capture light in the near-infrared spectrum, which
ranges from about 700 to 2500 nanometers, just beyond what the human eye can see.
These cameras are especially valuable in low-light or nighttime conditions [127, 128], but
there is often not enough naturally occurring infrared light to generate a clear image. This
is where illuminators, essentially NIR LED lights are required. When these illuminators emit
near-infrared light, it reflects off objects and returns to the camera, enabling it to produce
images even in complete darkness. One of the significant advantages of using NIR light is its
invisibility to the human eye, making it ideal for discreet surveillance. The area under obser-
vation is bathed in light that's imperceptible to humans, yet the camera can capture detailed
images. Furthermore, in fluctuating lighting conditions, the amount of natural infrared light
can vary. llluminators ensure that NIR cameras maintain consistent image quality regardless
of these changes in ambient light. Additionally, in advanced systems like facial recognition,
NIR illuminators can provide depth information, enhancing accuracy and detail in models or
recognition processes. In essence, while NIR cameras are adept at detecting near-infrared

light, illuminators are often essential to ensure clarity and consistency in their imaging.

2.2.3.D. RGB Cameras

RGB cameras, commonly referred to as colour cameras, capture images using red, green,
and blue channels, mirroring the human eye’s perception of colour. In the endeavour to
prevent roadkill, these cameras can play a pivotal role [129-131]. Their ability to provide
clear, high-resolution, and colour-rich images makes them adept at detecting large animals
during daylight hours. The colour data can be instrumental in distinguishing animals from
the background, especially in diverse environments where the animal’s colouration contrasts
with its surroundings. Advanced image processing algorithms can further enhance their
detection capabilities, identifying animal shapes and movements. However, RGB cameras
have inherent limitations. Their performance can be significantly hampered during nighttime
or in low-light conditions, unlike sensors that detect heat or use infrared. Shadows, glare, or
direct sunlight can also impact the clarity of the captured images, potentially leading to false
detections or missed animals. Furthermore, in conditions like dense vegetation or fog, the
visibility and effectiveness of RGB cameras can be compromised. While they are generally
more affordable than some advanced sensors, they might require sophisticated algorithms

and continuous calibration to maintain accuracy in diverse scenarios.
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2.2.3.E. LiDAR

LiDAR is a remote sensing technology that uses pulsed laser light to measure distances to
objects, creating detailed three-dimensional representations of the environment. In the realm
of preventing roadkill, LIDAR sensors offer a promising solution. Its high-resolution data can
precisely detect and differentiate large animals from other obstacles [132, 133], reducing false
alarms. Operating both day and night, LiDAR does not rely on ambient light, making it effect-
ive in various lighting conditions. Furthermore, its ability to penetrate light fog or vegetation
offers a clearer view of potential hazards. However, there are challenges to consider. While
LiDAR provides shape and distance data, it doesn’t offer colour information, which can be
useful in some detection scenarios. Dense vegetation or heavy rain can impact its effect-
iveness, scattering the laser pulses. Long-range and high-resolution LiDAR systems can be
expensive, and interpreting the data requires specialised software and expertise. Despite

these challenges, its potential in large animal detection systems remains significant.

2.2.3.F. Radar

Radar, an acronym for Radio Detection and Ranging, is a sensing system that emits radio
waves and analyses the reflections to determine the distance, angle, and velocity of objects.
In the context of preventing roadkill, radar can be a potent tool. lts primary advantage lies
in its ability to detect large animals in various conditions [99, 134, 135], including darkness,
fog, rain, or snow, where visual systems might fail. By detecting moving animals from a
distance, radar provides ample time for vehicles to receive alerts and react, enhancing road
safety. Furthermore, it is less affected by light conditions, ensuring consistent performance
regardless of the time of day. However, challenges exist. While radar is adopted for detect-
ing animal movement, it often struggles to differentiate between animals and other moving
objects without sophisticated data processing. Dense vegetation or certain terrains might
also impact radar waves, affecting detection accuracy. Additionally, high-end radar systems
can be costly, and their integration into a comprehensive RADS might require specialised

expertise.

2.2.3.G. Thermal Cameras

Thermal cameras are advanced imaging devices that capture pictures based on the heat emit-
ted by objects. Unlike traditional cameras that rely on visible light, thermal cameras visualise

temperature differences, making them particularly adept at detecting warm-blooded animals
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against cooler backgrounds [136-138]. In the context of preventing roadkill, these cameras
can have a significant impact. Large animals, due to their size and metabolic activity, emit
a distinct heat signature that stands out, especially during nighttime or in low-visibility con-
ditions. This makes thermal cameras exceptionally effective for identifying the presence of
animals near roadways, even in complete darkness. Their ability to operate independently
of ambient light ensures consistent performance, reducing the risk of AVCs. Furthermore,
they can function effectively in various environmental conditions, such as fog or dense ve-
getation, where other sensors might struggle. However, there are challenges to consider. In
environments with minimal temperature differences, like during hot days, the effectiveness of
thermal cameras can be compromised. They might also struggle to detect animals that are
well-insulated or have fur that traps heat effectively. High-quality thermal cameras can be a
significant investment, and interpreting the captured data might require specialised software

and expertise, adding to the system’s complexity.

2.2.3.H. IR Beam Sensors

IR beam sensors, often referred to as infrared break-beam sensors, operate based on a
straightforward principle: they emit infrared beams that, when interrupted, signal the pres-
ence of an object. In the context of preventing roadkill, these sensors can be strategically
placed alongside roads to detect large animals that might pose a collision risk [112, 139]. As
described in a study on U.S. 41, a system was implemented using such sensors arranged in
arrays, effectively covering stretches of road to detect local wildlife. The advantages of IR
beam interrupt sensors are notable. They can operate day and night, are relatively unaf-
fected by ambient light conditions, and can provide real-time alerts, making them invaluable
for timely warnings. Furthermore, their design can be tailored to detect only larger animals,
reducing false alarms from smaller creatures. However, there are challenges to consider.
Environmental factors like fog or heavy rain might affect the sensor’s effectiveness. The sys-
tem requires regular maintenance to ensure the beams remain unobstructed. Additionally,
while they can detect an animal’s presence, they don't provide detailed information about
the animal’s type or behaviour. Despite these challenges, their potential in RADSs remains

significant.

2.2.3.1. Intrusion Buried Cable Detection Sensor

The intrusion buried cable detection sensor [120, 121] utilises a 300-m-long dual-cable sensor

embedded beneath the road surface to monitor animal movements. When animals approach
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or cross these cables, they disturb an invisible electromagnetic detection field generated
around the cables. This system’s detection mechanism is intricate, taking into account factors
such as the animal’s conductivity, size, and movement patterns. Notably, it can identify
multiple animals crossing simultaneously. The system'’s central processor unit is alerted by
any disturbance, and it can precisely pinpoint the location of the intrusion. To optimise
detection, the processor’s settings are adjustable, with a detection threshold set at 70 dB

across the entire cable length, factoring in the traffic volume of the specific road segment.

2.2.4 Machine Learning Approaches

In recent years, research has increasingly focused on leveraging machine learning technolo-
gies in the development of RADSs. Deep learning, a specialised subset of machine learning,
has emerged as a promising solution for animal detection. These models excel in processing
complex visual data captured by sensors such as RGB, NIR, or thermal cameras, thereby
offering the potential to significantly improve detection rates and enhance safety measures
for both humans and animals. However, the deployment of deep learning models faces
challenges, particularly the labour-intensive and costly task of data labelling. In this regard,
self-supervised learning offers a breakthrough as it allows for the automatic labelling of
datasets, which not only expedites the training process but also reduces the potential for
human-induced labelling errors. This approach could be pivotal in making deep learning
models more scalable and efficient for large animal detection. Another critical consideration
is the practical environment in which these detection systems are usually deployed. Given
that many such systems are intended for use in rural or remote areas where computational
resources are limited, there is a need for real-time data processing capabilities. Edge comput-
ing serves as a solution to this challenge by facilitating data storage and computation closer
to the source, thus enabling real-time decision-making and reducing latency. This is partic-
ularly relevant in rural settings where intelligent transportation systems require immediate

data processing for optimal functioning.
Therefore, this section will examine the following five interconnected topics:
1. Machine learning approaches in large animal detection
2. Few-shot and zero-shot learning for rare species
3. Label efficient learning for object detection

4. The role of edge computing in enabling real-time, resource-efficient deployments
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5. Machine learning models on field robots and edge devices

It provides a comprehensive understanding of the machine learning approaches currently

shaping the future of large animal detection systems.

2.2.4.A. Machine Learning in Large Animal Detection

Machine Learning is a subset of artificial intelligence that enables systems to learn from
data, identify patterns, and make decisions without explicit human intervention [140, 141].
Algorithms in machine learning are diverse, ranging from supervised learning methods like RF
and SVMs to unsupervised methods like clustering and Neural Networks. The applications are
wide-ranging and have penetrated various fields, including healthcare, finance, and natural
sciences. In the context of large animal detection, machine learning models are increasingly
adopted to improve the accuracy and effectiveness of detection systems [142-144]. These
models can process large sets of sensor data to predict the likelihood of animal presence,
thereby aiding in the prevention of AVCs. The adaptability and self-improving nature of
machine learning algorithms make them well-suited for dynamic environments where animal

behaviour and movement patterns can be unpredictable.

Machine learning is revolutionising roadside transportation facilities, especially in mitigat-
ing AVCs. Traditional roadside systems, such as fencing and underpasses, have been limited
in their effectiveness due to the unpredictability of animal movements. However, with ma-
chine learning, intelligent detection mechanisms are being integrated into these facilities.
These mechanisms, equipped with sensors and cameras, can predict and alert about animal
presence in real-time. For instance, smart wildlife crossings, which use machine learning
algorithms, can adaptively control warning signs based on the detected animal activity, en-
suring drivers are alerted promptly. Machine learning models, particularly CNNs, are em-
ployed to differentiate between animal species, tailoring the alert’s urgency. This specificity
in detection aids in providing contextual information to drivers, ensuring they react appro-
priately. As more data is collected, these machine-learning-integrated facilities refine their
predictions, enhancing their effectiveness. Furthermore, the fusion of machine learning with
geographic information systems in these facilities has enabled the creation of dynamic risk
maps, which can be displayed on digital roadside billboards, offering real-time updates on
potential crossing zones. Continuous advancements in machine learning promise a future
where roadside transportation facilities are not only reactive but also proactive in ensuring

road safety for both vehicles and wildlife.

Various types of sensors can feed data into machine learning algorithms for animal de-
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tection. RGB sensors capture standard visual data, while thermal sensors can detect heat
signatures [129-131]. LiDAR [132, 133] and Radar [99, 134, 135] are also commonly used,
especially in conditions of low visibility or for capturing data in three dimensions. These
sensors collectively provide a rich set of data that machine learning algorithms can analyse

for predictive modelling.

The main advantage of machine learning algorithms in animal detection lies in their ability
to continually improve their predictive models as more data is gathered [142-146]. This
is particularly crucial for adapting to seasonal or environmental changes that may affect
animal behaviour. Machine learning algorithms can also handle multi-sensor data, thereby
providing a more comprehensive understanding of animal movement patterns. This multi-
sensory approach is often more effective than traditional methods which may rely on a single

type of sensor.

Despite their potential, current machine learning models for animal detection face notable
challenges. A primary limitation is their reliance on human-labelled datasets for training.
Firstly, there's a scarcity of existing datasets specifically tailored for animal detection, and
this paucity becomes even more pronounced when detecting uncommon species. This lack of
comprehensive datasets restricts the model’s ability to recognise a diverse range of animals.
Secondly, the process of manual annotation of these datasets is labour-intensive. This not
only consumes a significant amount of time but also introduces the risk of human error
or bias into the model [147]. Furthermore, many advanced machine learning algorithms
demand considerable computational resources [148, 149], posing challenges for their direct

implementation into field devices, which typically have restricted processing capabilities.

2.2.4.B. Few-Shot and Zero-Shot Learning for Rare Species Detection

In the field of wildlife conservation and research, it is crucial to detect and identify both
common and rare species. Traditional machine learning models, which have shown success in
various domains, face a hurdle when it comes to uncommon species. They rely on extensive
labelled datasets to train effectively. However, for uncommon species, such datasets are

either minimal or non-existent.

Few-shot and zero-shot learning [150-152] are two advanced techniques that hold the
potential to revolutionise the detection of these elusive species. Few-shot learning, as the
name suggests, is designed fo recognise new categories based on a very limited set of
labelled examples. This is particularly beneficial when dealing with species for which only

a handful of images or videos might be available [153, 154]. Instead of requiring thousands
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of images to train, few-shot learning models can generalise from just a few, making them

invaluable tools for ecologists and conservationists.

Zero-shot learning, on the other hand, takes this a step further. It leverages semantic
relationships between known and unknown species, enabling models to detect and classify
animals they've never seen during training [155]. Imagine a scenario where a model, trained
on various bird species, encounters a rare bird it hasn’t seen before. Using attributes of birds
it already knows, the zero-shot model can make an educated guess about this new species.
This ability to infer characteristics of an unseen species based on known attributes is what

makes zero-shot learning so powerful.

2.2.4.C. Label Efficient Learning for Object Detection

The process of manually labelling vast datasets is not only tedious but also error-prone,
potentially introducing biases that can adversely affect the model’s performance. Further-
more, acquiring ground truth labels for niche tasks, such as rare animal detection, can be
impractical and costly. Given the rapid expansion of data in today's digital era, there is a
pressing need for automating the data labelling process. To address this, various machine
learning paradigms have been proposed to train models with limited supervision, including
self-supervised learning (SSL), semi-supervised learning object detection (SSOD), and weakly
supervised learning object detection (WSOD), reducing human intervention and thereby en-

suring more consistent, objective, and scalable labelling.

SSL is a relatively new subset of machine learning where the model is trained to solve
auxiliary tasks using information extracted solely from the input data, without relying on
explicitly labelled examples. Essentially, it leverages the structure within the data to generate
its own supervisory signal [148, 149]. This methodology bridges the gap between supervised
learning, which demands extensive labelled data, and unsupervised learning, which often
lacks direction and specificity [147, 156].

Among the approaches developed for SSOD, self-supervised sample mining (SSM) [157]
incorporates high-confidence patches from unlabelled images as pseudo labels to enhance
training. [158] focuses on improving data consistency and eliminating background distrac-
tions, while the STAC [159], which stands for self-training (via pseudo label) and the augment-
ation driven consistency regularisation, leverages extensive data augmentation techniques
on unlabelled images to enrich model robustness. Additionally, [160] implements a teacher-
student framework that utilises knowledge distillation to improve the learning process in

SSOD. Similarly, [161] adopts a mean teacher strategy, wherein a more stable and consistent
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model guides the learning of the primary model. These methods aim to optimise limited
labelled data and maximise learning from unlabelled datasets. However, they still face chal-
lenges, such as the requirement for noise-free annotations and a balanced split of labelled
and unlabelled data, which are not always achievable in practical scenarios. Furthermore,
the use of rich feature representations generated by emergent vision foundation models
like self-distillation with no labels (DINO) [162, 163], contrastive language-image pre-training
(CLIP) [164], Segment Anything Model (SAM) [165], and Web Ontology Language (OWL) [166]
can significantly reduce or eliminate the need for manual data annotation in existing training

protocols.

In the realm of animal detection, accurate and rapid identification is crucial, be it for con-
servation efforts, traffic safety, or ecological studies. Traditional machine learning models for
animal detection usually demand labelled data, often curated manually by experts. By ap-
plying these self-, semi-, or weakly-supervised learning methods, models can use unlabelled
videos and images to discern patterns, such as animal movements or distinctive features, ef-
fectively training themselves [167, 168]. For instance, a self-supervised model might be tasked
with predicting the next frame in a video, thereby learning about animal motion patterns. As
it progresses, the model becomes better equipped to detect and identify animals from novel

inputs.

2.2.4.D. Resource-Efficient Edge Computing in Detection Systems

Edge computing has emerged as a paradigm that brings computation closer to the data
source, such as Internet of things (loT) devices, sensors, and other endpoints. This approach
is designed to reduce latency, save bandwidth, and provide efficient processing [169, 170].
Traditional cloud computing models often require data to be sent to centralised servers for
processing, which can introduce latency and consume significant bandwidth. Edge computing,
on the other hand, processes data at or near its source, making it particularly suitable for
resource-limited settings. This local processing can lead to faster response times and reduced
network congestion [171, 172]. In the context of intelligent transportation, edge computing
can enhance vehicular services through computation offloading. For instance, mobile edge
computing has been applied to vehicular networks to optimise resource allocation and reduce

computation overhead [173, 174].

Implementing edge computing requires both hardware and software considerations. On
the hardware side, energy-efficient architectures are crucial to ensure sustainability, espe-

cially in resource-constrained environments [175, 176]. Software-wise, efficient algorithms for
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task offloading, resource allocation, and data processing are essential to maximise the bene-
fits of edge computing [177, 178]. Several case studies and experiments have demonstrated
the potential of edge computing in various applications. For instance, a study on video pro-
cessing in multimedia loT systems highlighted the effectiveness of self-supervised models
in discerning patterns from unlabelled videos and images [168]. Another experiment show-
cased the benefits of a hybrid approach, combining edge computing with cloud resources, to

optimise task segmentation and resource allocation in loT-enabled mobile edge clouds [179].

2.2.4.E. Machine Learning Models on Field Robots and Edge Devices

Field robots and edge devices often lack sufficient computational resources for training ma-
chine learning models, making self-training on these platforms using unlabelled data partic-
ularly challenging. Self-training methods [180-182] typically involve training a model on the
device with labelled data and then making predictions on unlabelled data. If the top predic-
tion score for an unlabelled input exceeds a threshold, the input is pseudo-labelled and used
in further training iterations. While this approach can enhance performance, it also slows
down training and can lead to instability depending on the threshold. Additionally, many
edge devices and field robots do not have access to labelled data or may have noisy labels
for initial model training, significantly hindering the effectiveness of self-training using top

prediction scores.

Another approach involves adapting and fine-tuning pre-trained machine learning models
directly at the edge, eliminating the need for complete retraining. Various studies [183-187]
propose transfer learning for edge learning, allowing models on edge devices to adapt and
fine-tune with minimal computational resources. Online adaptive learning methods gener-
ate immediate predictions and incrementally update the model upon detecting concept drift,
such as using covariance matrices or least-square SVMs. However, they often sacrifice per-
formance for efficiency. The MobileDA [188] addresses domain adaptation for edge devices
by distilling knowledge from a teacher network on a server to a student network on the
edge device, achieving domain-invariance and state-of-the-art performance in real-world
scenarios like loT-based WiFi gesture recognition. However, the effectiveness of MobileDA
assumes that the teacher network has performed well on field data, which is challenging in
practice because field data is usually unlabelled and difficult to obtain. Relying exclusively
on teacher models trained with web-sourced data can lead to deficiencies in the student
model’s capacity to collect data and self-improve. If the knowledge embedded in the teacher
model does not align with the student model’s operational environment, the student may

face difficulties in gathering and learning from relevant real-world data. This misalignment
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can impede the student model’s ability to adapt and evolve over time, thereby compromising

its effectiveness and overall utility.

Distributed and collaborative techniques are widely used for edge-device machine learning
models. These techniques leverage the computational capabilities of multiple edge devices,
aggregating their results instead of relying on a single resource-constrained device. Feder-
ated learning [189-192] offers a transformative approach to decentralised model training. In
the context of edge learning, where data is distributed across numerous edge devices, FL
enables collaborative training without centralising sensitive data. While FL can help reduce
computation needs for model training, addressing data shift and self-training for edge devices

remains challenging.

2.2.5 Field Trials

The growing issue of roadkill involving a diverse range of animal species highlights the ur-
gent need for effective RADSs. Field trials serve as a pivotal phase in the development
and assessment of these technologies, though the emphasis has traditionally been more
on conservation than road safety. In the real-world testing environments, the effectiveness,
limitations, and logistical considerations of different systems need to be comprehensively
evaluated. The trials yield essential data on detection accuracy and the impact on animal
behaviour, significantly informing the scientific community and policy-makers. The rigour of
the methodologies employed, involving various blocks and monitoring periods, ensures the

collected data is robust and reliable.

2.2.5.A. The Virtual Fencing System in Tasmania

The Virtual Fencing system, developed by iPTE Traffic Solutions Ltd. in Austria [119], is an
innovative roadside solution designed to mitigate roadkill and enhance road safety. Installed
along a 4.5-km stretch of Tasmania’s Huon Highway in April 2018, the system operates from
dusk to dawn, targeting nocturnal and crepuscular animals [118]. It employs solar-powered

devices placed at 25-meter intervals on both sides of the road.

For the Tasmanian trial, the 4.5-km stretch was divided into six equal segments with 750-
meter buffer zones at both ends, totalling eight monitored segments. These segments were
divided info two blocks, and the system was activated in phases across these blocks. The
study spanned 126 days of roadkill monitoring. However, despite prior studies indicating
reductions in roadkill up to 90% in Austria and over 50% [119], the Tasmanian field trial [118]
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shows that the system did not produce significant results. A total of 174 roadkill incidents
were monitored, mainly involving Bennett’s wallabies, Tasmanian pademelons, and common

brush-tail possums, and no substantial reduction was observed.

The system requires low maintenance and offers high reliability, but it has limitations,
including unproven effectiveness in extreme weather and a reliance on vehicle headlights,
which mainly address nighttime incidents. lts impact on wildlife habits and routines raises
concerns, as it infroduces artificial stimuli that could disrupt natural behaviours and stress

levels, necessitating long-term studies to understand its ecological impact fully.

In summary, the Virtual Fencing system offers a promising yet inconclusive approach to
reducing roadkill. While it claims a number of advantages, the results from the Tasmanian
study point to the need for further research, system modifications, and perhaps a more

thorough ecological impact assessment to establish its overall effectiveness.

2.2.5.B. The Buried Cable Roadside Animal Detection System in Virginia

The Virginia Department of Transportation (VDQOT), in collaboration with the Virginia Tech
Transportation Institute (VTTI), undertook a 10-month field trial o assess an RADS aimed at
reducing AVCs [120, 121]. The system utilises modular ranging buried coaxial cables and
SC2 technology to create an electromagnetic field that detects large animals. Preliminary
site surveys were conducted by VTTI researchers to address installation requirements and
potential obstacles. The trial period even accounted for seasonal variances, including winter

months.

While the trial data suggested over 95% detection reliability and the ability to function
under different environmental conditions, such as snow, there are two major concerns that
need to be addressed. First, the actual detection accuracy in real-world settings could be
lower than the study suggests. Factors like animal behaviour, size, and speed could affect
the system’s efficacy, raising questions about its operational reliability. False positives or
inconsistent detection rates could undermine road safety, potentially leading to distractions
for drivers or less effective animal deterrence. The financial constraints associated with this
system cannot be overlooked. The installation process involves not just the sensor cables but
also complex site surveys and potential road infrastructure modifications. Moreover, these
specialised cables require periodic calibration and maintenance, all of which contribute to the
system'’s overall costs. Without a detailed cost-benefit analysis, it remains uncertain whether
the initial and ongoing financial investments would be justified by the system'’s efficacy in

reducing roadkill and enhancing driver safety.

Section 2.2: Roadside Animal Detection Systems (USYD)

55



While the technology appears promising and the methodology of the field trial was robust,
these points highlight that the RADS still requires significant improvements in both detection

accuracy and cost-effectiveness before it can be considered for broader implementation.

2.2.5.C. The Roadside Animal Detection System in Florida

The RADS in Florida is an innovative project to reduce the risk of AVCs along a 1.3-mile section
of US 41[193]. Initiated through a multi-agency collaboration, the system became operational
in January 2012. It aims to protect large animals such as panthers by alerting motorists with
bright LED lights, activated by solar-powered sensors that identify wildlife approaching the
roadway. The system sensors are daisy-chained infrared sensors, specifically engineered to
detect large animals. They are strategically placed 153 meters apart, just beyond the road
shoulders, creating a 2.1 km detection beam that runs parallel to the road. The system is
designed to ignore smaller animals by setting the infrared beam at a height of 46 cm above
the ground. The project underwent rigorous evaluation using a driving simulator to measure
its efficacy, eliminating external variables such as weather and equipment malfunctions. The
study included 90 participants, ranging from 18 to 45+ years old, divided evenly into three

age groups to consider age’s impact on driver behaviour.

The study focused on two main objectives: evaluating the system’s impact on driver speed,
reaction time, and the likelihood of collisions, and comparing the effectiveness of word-based
versus picture-based warning signs. Results were promising: drivers responded positively
to the system warnings, reducing speed and improving reaction times. The picture-based
signs were found to be particularly effective during twilight hours, reinforcing prior research
advocating for their use. Though the difference in collision rates between word-based and
picture-based signs was not statistically significant, researchers suggest that a larger sample
size could yield more conclusive results. An additional key insight was that even a small
reduction in speed could result in a significant decrease in the likelihood of a collision. The
simulator study found that a speed decrease from 97 km/h to 89.5 km/h could significantly
reduce crash rates. The study also reinforced the importance of driver age as a factor, with
younger drivers displaying more risk-prone behaviour, emphasising the need for targeted

educational programs.

Another significant finding pertained to the system’s effectiveness at different times of
day. Data suggested that the lower nighttime speed limit in Big Cypress National Preserve
could be highly effective in reducing AVCs, an implication that could inform future policy

decisions. Brake reaction times, a crucial factor in preventing collisions, were notably better
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among the youngest and oldest age groups when exposed to picture-based the system’s
signs, suggesting that these may be more effective in priming drivers to expect an animal on
the road.

In summary, the Florida RADS project presents a well-researched, multi-faceted approach
to the complex issue of AVCs. While the results indicate that the system has the potential to
make meaningful improvements in driver behaviour, they also open up avenues for further
research, including the comparative effectiveness of different types of warning signs and the

need for age-specific interventions.

2.2.5.D. The PATH Animal Warning System in California

The project was a collaboration between Caltrans and the California PATH Program, with the
Western Transportation Institute of Montana State University as a subcontractor [114]. The
focus was on the PAWS and the reliability of RADSs. AVCs are a growing concern as urban
development encroaches on wildlife habitats. Solutions like fencing, overpasses, and dy-
namic flashing systems have been explored. The project aimed to: (1) assess animal warning
systems’ effectiveness, and (2) gauge driver reactions to these warnings. A site near Fort
Jones in Northern California was selected for the study. An RADS using a microwave system
was chosen to work with PAWS. The PAWS Monitoring System allowed researchers to monitor
system functionality and detect recent events. The PAWS data acquisition system (DAS) com-
bined data from animal detectors and vehicular radars to measure driver responses. Phase
Two began with repairing the system after a 9-month hiatus due to contractual delays. Chal-
lenges included repairing damage from a vehicle collision at the test site. The study used

two experimental designs to understand the influence of warning signs on drivers.

The research team believes the project effectively measured the detection system'’s reliab-
ility. However, they recommend further reliability research post-system modifications. The
project’s duration was deemed insufficient to assess the system’s impact on large mammal-
vehicle collisions. The team suggests monitoring for 3-5 more years and re-analysing the
data. Defining success parameters and threshold values for such projects is crucial. While
public opinion is valuable for system location and design, long-term decisions on RADSs
should be based on a strategic plan. This plan should consider systems in various regions,
ensuring design and reliability issues are addressed, and include a comprehensive public

communication strategy.
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2.2.5.E. Remarks

Road Safety and System Reliability: The implications of RADS technologies on road safety
are paramount, which require a thorough examination of their reliability and effectiveness in
preventing accidents. A critical analysis of how these systems respond to failures is essential
for ensuring that they consistently contribute to improved driver awareness and overall road

safety.

Optimising for Ecological Preservation and Human Safety: Adaptations and adjust-
ments made during field trials should not only focus on technological refinement but also
prioritise optimising the systems for ecological preservation and human safety. This requires
a multidisciplinary approach, bringing together expertise from technology, ecology, trans-

portation, and other relevant fields.

Adapting to the Australian Context: Australia’s distinctive wildlife and challenging road
conditions necessitate a specialised approach to RADSs. The continent is renowned for its
diverse array of unique and rare species, many of which exhibit distinct appearances, be-
haviours, and life cycles that are not found in other parts of the world. This uniqueness
presents specific challenges for the implementation of RADS, requiring technologies that are
finely tuned to the local fauna’s specific habits. Ensuring that these systems are sensitive to
the particular characteristics of Australian wildlife is crucial, as the goal is to reduce roadkill

incidents without disrupting the animals’ natural activities or habitats.

Field trials conducted within Australia must aim for holistic solutions, enhancing road safety
for both humans and animals while preserving the ecological balance. Unlike some RADS im-
plementations in other regions, which may not fully consider the impact on animal behaviour
and habitat, the Australian context demands a more nuanced and considerate approach. By
taking into account the distinctiveness of Australia’s wildlife and their habitats, RADSs in Aus-
tralia have the potential to set new standards in mitigating roadkill incidents, ensuring safer

roads, and fostering a thriving ecological system.

Building a Robust and Reliable Solution: Drawing lessons from past experiences and
system failures is crucial to developing a robust and reliable RADS solution for Australia. This
requires a dedicated effort to test and adapt these systems, ensuring that they are fit for
purpose and capable of contributing to wildlife preservation, enhancing driver safety, and

mitigating roadkill incidents.
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2.2.6 Conclusions

The increasing issue of roadkill, driven by the expansion of human infrastructure into wildlife
areas, requires innovative strategies to protect both wildlife and humans. In this context,
RADSs, enhanced by deep learning models and validated through comprehensive field trials,

emerge as a cornerstone in the strategic approach to curb AVCs.

Advanced Sensory Technologies: RADSs are distinguished by their incorporation of
cutting-edge sensory technologies. The systems are not limited to traditional sensors but
are enhanced with the integration of technologies like LiDAR, radar, and thermal cameras.
These advanced sensors are proficient in capturing intricate environmental data, offering a
comprehensive insight into animal movements in real-time. Their capability to function ef-
fectively in low light conditions amplifies the operational efficiency of RADSs, ensuring a 24/7

active animal detection mechanism.

Deep Learning Model for Animal Detection: The efficacy of RADSs is amplified by the
integration of deep learning models, which are pivotal in transforming raw, complex data
into actionable insights. These models are engineered to identify intricate patterns, enabling
precise animal detection. Innovations in self-supervised learning and edge computing have
emerged as solutions to the challenges of efficient data labelling and real-time processing,
respectively. These advancements are instrumental in enhancing the adaptability and effect-
iveness of RADSs.

Automatic Data Labelling: In the realm of data analysis, the advent of self-supervised,
few-shot, and zero-shot learning has revolutionised the process of data labelling. These
innovative techniques facilitate automatic labelling of extensive and complex datasets. Their
integration ensures enhanced accuracy in animal detection and augments the adaptability
of RADSs to identify a wide variety of species, including the rare and less documented ones,

effectively addressing the data insufficiency challenge.

Evaluation of Safety Outcomes: The theoretical assertions of the effectiveness of RADSs
are substantiated through field trials. These trials, conducted in diverse real-world settings,
provide critical feedback essential for the continuous refinement of the systems. However,
there exists a gap in knowledge about whether the performance of these trials has led to the

broader deployment of the systems in various regions or settings.

Broader Deployment Potential of Field Trials: Furthermore, understanding the broader
deployment implications can offer a more comprehensive view of RADSs" potential impact

on larger scales. The overarching objective remains the significant contribution of RADSs to
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enhancing safety outcomes, diminishing roadkill incidents, and promoting a balanced coex-
istence between human and wildlife populations. Recognising and addressing this knowledge

gap can further solidify the system’s potential for widespread adoption.

In this evolving landscape, the integration of advanced sensor technologies, sophisticated
deep learning models, and empirical insights from field trials is pivotal. It plays a key role
in moving towards a future where the safety and preservation of both human and animal
lives are not just a possibility but a tangible reality. Yet, further studies and assessments are
essential to bridge the knowledge gap regarding the scalability and broader application of

these systems following their promising initial trial results.
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3.1. Introduction

This chapter details the development and testing of a large animal detection system and its
associated machine learning approach for classification. It employs advanced technologies to
address the challenges associated with real-time animal detection in varying environmental
conditions. Additionally, the system is designed to be low-cost and easy to deploy, requiring

minimal infrastructure support in the field.

To thoroughly evaluate the performance of the developed system, particularly focusing
on its effectiveness in edge deployment and its detection range, we have conducted a series
of comprehensive testing experiments. These experiments are designed to rigorously assess
the system’s capability to accurately detect objects at varying distances and under different
operational conditions. This evaluation process is crucial for ensuring that the system not only
meets the expected specifications in controlled settings but also performs reliably in real-
world scenarios, where factors such as environmental variability and hardware limitations

can significantly impact effectiveness.

The chapter begins with the hardware design of the developed system in Section 3.2.1,
detailing the sensor suite, networking, and edge computing. This is followed by the software
structure in Section 3.2.2, which addresses key elements such as image processing pipelines,
event-triggering pipeline, data logging, and remote access capabilities. These system fea-
tures are vital for ensuring that the system is not only functional but also manageable and
accessible for practical applications. Section 3.2.3 covers the methodology, auto-labelling,
and experimental results of the novel machine learning pipeline developed to enable the
self-training of the animal detection model. This approach ensures the system’s capability
to detect objects beyond pre-defined categories, thereby enhancing its adaptability to large
animal detection. Central to our pipeline is an optimised object detection model, tailored for
edge deployment. This model strikes a balance between real-time processing speed and de-

tection accuracy, which is essential for immediate responses in dynamic road environments.

The chapter also covers the system testing after the development phase. Section 3.3.1
presents tests conducted in outdoor and lab environments to validate various system functions

developed. Section 3.3.2 presents the evaluation results of the fine-tuned detection model.

Lastly, the conclusions are presented in Section 3.4.

Section 3.1: Introduction

62



3.2. System Development
3.2.1 Hardware Design

3.2.1.A. Sensor Suite

The sensor suite primarily consists of two RGB cameras, one thermal camera, and one solid-
state LiDAR, as illustrated in Figure 3.1. Among these sensors, the cameras are specifically
designed for large animal detection, utilising a vision-based machine learning approach ef-
fective under both day and night lighting conditions. While the cameras serve as the primary
sensor type for animal detection, the LIDAR sensor is included in this project to provide an

alternative sensory modality for monitoring vehicle-animal interactions.

Figure 3.1.: The sensor head developed for animal detection. lts components, from top to bottom, include: a
black cap housing WiFi, GPS, and 4G antennas for communication; a white electrical junction box;
an aluminium enclosure for the thermal camera; two RGB cameras (the left being the medium-angle
camera and the right, the telephoto camera); and the solid-state LiDAR. In the picture, the sensor

head is shown temporarily mounted on a tripod for outdoor testing.

RGB Cameras

The RGB camera model employed is the Lucid Vision Labs TDR054S-CC, featuring 5.4
MP, 2880 x 1860 pixel resolution, and 120 dB high dynamic range (HDR) imaging. HDR
cameras are essential for accurate and robust animal monitoring in Queensland’s outdoor
environments, as they are designed to capture a wide range of lighting conditions—from

bright sunlight to dark shadows—in a single image. This capability makes them well-suited
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for capturing detailed and accurate images of animals in outdoor scenes, where lighting can

be unpredictable and challenging for standard non-HDR cameras to balance.

Additionally, the two RGB cameras complement each other, being paired with different
optical lenses to cover near and far scenes. The medium-angle optical lens employed is
the Edmund Optics 12 mm, with a 41.4° horizontal Field-of-View (FoV), while the telephoto
lens used for the other camera is the Edmund Optics 50 mm, with a 10° horizontal FoV.
Digital zooming is also utilised for images from the medium-angle camera to cover mid-
range scenes. |t should be noted that image cropping and resizing techniques are applied to
each camera to achieve a higher frame rate and lower data storage requirements for logging
while ensuring the animal detection performance remains unaffected. These details will be

elaborated on in later sections.

The camera bodies are factory IP67-rated, and both lenses are housed in IP67-rated lens
tubes, enabling the entire RGB camera systems to operate under all weather conditions.

Therefore, no additional enclosure is required for the cameras.
Thermal Camera

The lack of a lighting source poses a significant challenge for animal detection using
RGB cameras during nighttime. To overcome this limitation, the system employs a thermal
imaging camera, the FLIR A68, which has a resolution of 640 x 480 pixels. All objects,
including animals, emit infrared radiation, which is invisible to the human eye. Thermal
imaging cameras can detect this radiation and create a visual representation of the heat
signatures emitted by animals, even in complete darkness. This capability makes them an
effective tool for identifying and tracking animals at night or in dense foliage. The thermal

camera is equipped with a factory lens that has a 24° horizontal FoV.

The thermal camera is housed in an autoVimation Salamander enclosure with a Ger-
manium front window, as illustrated in Figure 3.1, to make it weatherproof in outdoor envir-

onments.
LiDAR

The LiDAR sensor used in the system is the Neuvition Titan MI-R solid-state LiDAR, featuring
a working distance of up to 300 metres for objects with 20% reflectivity. This LiDAR has a
15° horizontal FoV and an 8° vertical FoV, and it provides dense point clouds at a rate of
10 frames per second. These point clouds are useful for reconstructing vehicle and animal

trajectories in post-analysis. The LiDAR sensor has a factory IP67 rating.
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3.2.1.B. Networking and Edge Computing

The network equipment and edge computing components are presented in Figure 3.2. The
system features an NVIDIA Orin 64GB Dev Kit, serving as the main computing unit for sensory
data processing, image inference, data logging, and triggering animal detection events. A
QNAP QSW-2104-2T network switch is employed to connect all sensors and the Orin, using
1Gbps and 10Gbps Ethernet connections, respectively. The network is managed by a Teltonika

RUTXI11 industrial router, which also provides dual-band WiFi and 4G LTE cellular connectivity.

Figure 3.2.: The networking and edge computing for the developed system. From left to right: a white electrical
circuit breaker; the NVIDIA Orin computing unit; the QNAP network switch; and the Teltonika router.
These devices were temporarily housed in a Pelican protector case for outdoor testing, as shown

in the picture.

An overview of the system'’s Ethernet connection can be found in Figure 3.3. The entire
system operates on 12V DC power, with an average power consumption of 96W and a peak
of 140W. Since the LiDAR sensor is not used for animal detection in the project, removing it

from the system can significantly reduce power consumption.
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Figure 3.4.: The image processing pipelines for the cameras.

3.2.2 Software Structure

3.2.2.A. Image Processing Pipelines

There are four image processing pipelines running in parallel in the software, as shown
in Figure 3.4. Each pipeline captures images from a camera as input and performs basic
image manipulation techniques, including cropping and resizing, before feeding them into
the YOLOv8 object detector to generate detection results. It is important to note that these
four pipelines process images from three cameras, with the first and second pipelines in

Figure 3.4 sharing images from the same medium-angle RGB camera, but using different
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cropping settings. The second pipeline processes a smaller region of the images from the
camera, creating a digital zoom-in effect. All pipelines for the RGB cameras resize the original
images to match the input resolution for YOLOv8 and to conserve data logging space. Since
the thermal camera produces VGA resolution images, no image resizing is required. The
object detection results from the four pipelines are then fed into the event-triggering pipeline

for further processing.

3.2.2.B. Event-Triggering Pipeline

Cam 1 Object

. —_— Bayesian Filter | ——
Detection Y

Detection

Event Trigger
99 Events

\ A 4

Cam N Object
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Detection 4

Figure 3.5.: The event-iriggering pipeline for the cameras.

The event-triggering pipeline takes the YOLOv8 detection results as input, performs signal
filtering, and aggregates the outcomes to trigger the final detection events, as shown in Figure
3.5. The raw YOLOv8 output contains the detection of a list of object classes supported by
the trained detection model. However, the system only needs to check for the detection of
one or multiple animal classes that it is designed for, such as “cassowary”, defined here as
the class(es) of interest (Col). Despite the detection model’s performance, the raw detection
results are often noisy, containing missed detections and false positives, which necessitate
proper signal filtering. In this pipeline, independent Bayesian filters are employed for each
object detection input channel. Eventually, the filtered signals are fused to trigger a detection
event, which is then connected to the event-triggered data logging and the roadside message

display.

3.2.2.C. Data Logging

The data logging feature developed for the system can be divided into two parts: continu-
ous data logging and event-triggered data logging. The continuous logging operates 24/7,
providing essential field data for training the initial detection model and for subsequent iter-

ative model improvements throughout the system’s life cycle. In contrast, the event-triggered
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logging only records data just before and after the animal detection events occur, primarily
for post-analysis and event playback. Data logged in either scheme can also be used for
evaluating the system’s performance in animal detection. The edge computing unit has a

2TB solid-state disk for storing the logged data.
Continuous Data Logging

The system logs a continuous stream of raw sensory data, including image frames, LiDAR
point clouds, and other essential detection and system information. Due to limited data

storage on the edge computing unit, the logging is managed with a few control strategies:
1. Log sensory data at lower frame rates, e.g., one-tenth of the original rates

2. Use data compression, e.g., JPEG compression for images and lossless compression for
LiDAR point clouds

3. Manage the logged files against an allocated data budget on the local file system

Furthermore, the system generates lightweight H.265 encoded videos of camera images
for conveniently previewing scenes of interest in the field without needing to extract the
complete set of logged files from the system, thus saving on 4G data usage and transmission

time.
Event-Triggered Data Logging

The system also features event-triggered data logging, which logs data for x seconds
before and y seconds after a detection event. The purpose of this logging scheme is to
capture sensory data at the original frame rates around the events, which are essential
for playback, investigation of the events, post-analysis of data, and evaluation of system

performance.

3.2.2.D. Remote Access

The system provides remote access for various purposes, including status monitoring, sys-

tem maintenance, troubleshooting, and data retrieval. It offers two methods for remote login:

through a virtual private network (VPN) or using its public domain name amraal . duckdns. org.

To enhance its security against cybersecurity threats, the system only accepts SSH logins us-
ing public/private ED25519 key pairs from authorised remote hosts. Software tools have been

developed to extract H.265 preview videos and logged data files from the system remotely.
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Finally, the system also provides a real-time streaming protocol (RTSP) stream of the cam-
era images for quick live previews. This feature is accessible only through a WiFi connection

and VPN for security reasons.

3.2.3 Self-Training Machine Learning Pipeline

The LAARMA system requires the training of an effective machine learning model for roadside
large animal detection, along with the subsequent deployment of the trained model on an

edge device, which presents several unique challenges:

Data Acquisition and Labelling: A fundamental challenge in training machine learning
models, especially for animal detection, is the need for a substantial amount of accurately
labelled data. In the context of cassowary detection, this means obtaining a considerable
volume of well-labelled images or videos of cassowaries in various road scenarios. The key
challenge is how to efficiently and cost-effectively label such a dataset for training deep

learning models without compromising the quality and diversity of the data.

Resource Constraints in Deployment Environments: Roadside units, often deployed
in remote areas, face constraints such as scarce electricity and computing power. These
limitations pose significant challenges for deploying an efficient and reliable detection system.
Innovative solutions are needed to optimise the system'’s performance within these resource
limitations, including considerations for low-power operation, efficient data processing, and

model optimisation suitable for edge computing environments.

Data Sampling and Model Improvement Post-Deployment: After deployment, the sys-
tem must efficiently sample and process the data collected from its operational environment.
This involves deciding which data to log, how to obtain necessary data from the edge com-
puter, and how to use it to refine the machine learning model. Additionally, periodic updates
to the model are needed to accommodate changes in environmental conditions, cassowary
behaviour, or traffic patterns. The challenge lies in developing a streamlined process for reg-
ular model updates that can be implemented remotely, ensuring the system remains accurate

and effective over time.

Our system effectively addresses these challenges through an innovative self-training ma-
chine learning pipeline that integrates cloud and edge computing technologies. The details

of the pipeline are presented in the following sections.
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3.2.3.A. Methodology

This section outlines the methodology behind our self-training framework for detecting large
animals on roads and roadsides. The pipeline leverages a combination of cloud and edge
computing technologies to create a scalable system adaptable to environmental conditions

and different animal species.
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Figure 3.6.: Workflow of our self-training machine learning pipeline. Initially, a VLM running on a cloud server
synthesises images of cassowaries and generates the pseudo-labels using the web-sourced cas-
sowary images and field background images. These images are used to train the initial animal
detection model that operates on the edge device. In the field, this edge model processes images
captured and selects relevant data to send back to the cloud server. The VLM then automatically
processes the received field data, generating pseudo-labels, which are used to fine-tune the edge
model. This iterative cycle progressively refines and improves the detection performance of the

edge model.

Figure 3.6 illustrates the workflow of the self-training machine learning pipeline, showcas-
ing the integration of cloud and edge processes that underpin our innovative approach to

roadside animal detection.

The core of our methodology revolves around the use of a VLM for Open-Vocabulary
Obiject Detection (OVD) [166], which operates on a cloud server. This VLM is first tasked
with synthesising realistic images of cassowaries, serving as the initial dataset for training a
closed-vocabulary animal detection model to be deployed in the field. These synthesised
images are important as they allow us to train the animal detection model without the need
for extensive, costly field data collection and labelling, addressing a significant hurdle in

machine learning for field applications.

Once trained, the closed-vocabulary animal detection model is deployed on an edge
device in field locations where cassowaries are likely to appear. For convenience, this closed-

vocabulary model is also referred to as the edge model for the remainder of the section.
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The edge device can operate under constraints of limited power supply, computing capacity,
and intermittent connectivity. In field operation, this edge device continuously processes
environmental data, selecting only the most relevant data to send back to the cloud server.
This selective data transmission is important to maintain efficiency, particularly in remote or

resource-limited settings.

In the cloud, the VLM takes over again, processing the incoming field data to generate
pseudo-labels. These labels are not only used to refine the training of the edge model
but also enhance its ability to adapt to new and changing data patterns. This dynamic
updating mechanism ensures that the model evolves in response to new information, thereby

maintaining its accuracy and reliability over time.

Overall, the pipeline is designed with generality and scalability in mind, making it applicable
for detecting various large animal species beyond cassowaries. Next, this section details
each component of the pipeline, from initial data synthesis to the continuous learning on
deployed edge devices, complemented by experimental results that highlight the efficacy of

our approach.

3.2.3.B. Efficient Animal Detection Model for Edge Deployment

An efficient animal detection model, optimised for the constraints of edge computing, is
essential in the real-time operation of the developed LAARMA system. This model is designed
to balance the trade-off between detection accuracy and computational efficiency. It utilises
state-of-the-art algorithms capable of processing images or video feeds in real time, even
with limited computing resources. The model is streamlined to reduce the computational
load while maintaining high accuracy in detecting large animals under various environmental
conditions. This efficiency is critical for ensuring the system’s reliability and responsiveness

in real-world deployment scenarios.

In this project, we have chosen YOLOv8 [194] as the edge model for our animal detection
task, owing to its remarkable computational efficiency and real-time processing capabilities.
This model stands out as a suitable choice for applications where real-time detection is cru-
cial, such as in wildlife monitoring and traffic management systems. An example of using
YOLOVS in a traffic scene is presented in Figure 3.7. The choice of YOLOV8 is particularly ad-
vantageous in scenarios where quick decision-making is essential, as it allows for immediate
identification and response to potential hazards on the road. Also, the model’s streamlined
architecture reduces the computational burden, making its deployment feasible on roadside

units with restricted processing capabilities.
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Figure 3.7.: Testing the detection capabilities of YOLOv8 in a crowded road scenario. This showcases the
YOLOV8's robustness and precision in detecting various classes of objects even in densely popu-

lated scenes.

Furthermore, the resolution of raw images from cameras is often higher than what is
sufficient for a YOLOv8 detector. This motivates the use of digital zooming to further improve
the object detection range without additional hardware costs. Figure 3.8 demonstrates the
detector’s effectiveness in accurately identifying objects from a considerable distance using

digital zooming.

3.2.3.C. Synthesising Data for Initial Training Phase

Training machine learning models to accurately detect objects requires a substantial volume
of high-quality data. For our project, this involves gathering numerous labelled images of
cassowaries directly from their natural habitats. However, the acquisition of field data on
cassowaries is challenging due to hardware limitations and stringent data transfer constraints.
Besides, the brief visibility of cassowaries, typically ranging from 20 to 50 seconds, further

complicates the collection of sufficient data for effective training.

To overcome these challenges, we adopted a strategy of using synthetic data to initialise the
self-training machine learning pipeline. This process involves running a VLM (in our case, a
variant based on OWL) and SAM to detect and segment cassowary instances in web-sourced

images, respectively. These segmented cassowary instances are then digitally inserted into
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(a) (b)

Figure 3.8.: Using the YOLOV8 detector for detecting distant objects. The digital zooming technique is adopted
in the system to enhance the detection range by cropping a smaller patch from the original image
and processing it through the detector. (a) shows the detection on the original image. (b) illustrates
that the detector effectively identifies traffic participants approximately 200 metres away after

applying the digital zooming to the original image.

Figure 3.9.: Results of synthesised cassowary visuals, where instances of cassowaries, obtained from public

sources, are seamlessly integrated into field backgrounds.

various field backgrounds. To enhance the realism of the synthetic data, we apply a Gaussian
blur to seamlessly blend the cassowaries with their backgrounds. Two examples are presented
in Figure 3.9. This method helps create a diverse dataset and simulates different lighting

conditions and cassowary poses, which are essential for enhancing the model’s robustness.

At the end of the initial phase, we deployed a YOLOv8 model trained using the synthetic
data in the field to systematically gather real-world images of cassowaries directly from their
natural environment. This approach not only facilitated the collection of valuable field data
but also enabled us to evaluate the performance of the first YOLOv8 model under real-world
conditions. As a result, this helped us refine the model’s detection capabilities and adapt it to

the field scenarios.
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3.2.3.D. Auto-Labelling and Iterative Field Model Improvements

OVD marks a significant departure from traditional closed-vocabulary methods in object de-
tection. Unlike closed-vocabulary object detection, which relies on a fixed set of categories
learned during training, OVD models are capable of detecting objects based on their appear-
ance descriptions. This allows for the recognition of a broader range of objects that may not
be present in the initial training dataset. These models are trained using contrastive learning,
which utilises pairs of text and images. This approach enables the model to form associations
between textual descriptions and visual representations, thereby enhancing its capability to
detect and describe objects beyond pre-defined categories. However, OVD models are often
large in size and require extensive computing resources, posing challenges for deployment
on edge devices with limited computational resources. Moreover, while they offer the ad-
vantage of detecting a wide range of objects, their performance may not always match that
of closed-vocabulary systems in detecting objects that are part of their training dataset. This
trade-off between versatility and specialised efficiency is a crucial aspect to consider in the

application of OVD models.

Figure 3.10.: Results of applying OVD to RGB images. The cassowaries in the images are accurately detected
and localised, showcasing the effectiveness of OVD in identifying and pinpointing specific species
within images.

In the developed LAARMA system, we used a VLM as a OVD method to automate the
labelling of field data collected using the deployed field model, i.e., YOLOv8. The VLM used
here is the same one applied during the initial training phase. Figure 3.10 presents an example
of using the VLM to auto-label cassowaries in RGB images. Subsequently, we utilise the data
labelled by the OVD system to fine-tune the field model. By repeating the above two steps,

the field model’s performance is iteratively improved during the field operation. The iterative

Section 3.2: System Development

74



Field-
Collected

Data

Deployment Auto-Labelling
) Using VLM
Iterative
Model
Improvements
Psudo-
Synthetic Labelled
Data Data
Initial Training Retraining

Figure 3.11.: The initial training phase for the field model using the synthetic data and the subsequent iterative

model improvements using the auto-labelled field-collected data.

process is presented in Figure 3.11. Additionally, the VLM has shown impressive capability

across different sensor domains, such as thermal imagery, as demonstrated in Figure 3.12.

This second phase leverages the specificity and efficiency of a closed-vocabulary system,
fine-tuning it with the diverse and accurately labelled dataset generated by the OVD model.
This hybrid approach aims to combine the comprehensive detection capabilities of OVD
models with the focused efficiency of closed-vocabulary systems, creating a robust and

effective tool for wildlife detection in varying environments.

Dist: 1m 2017-06-01 20:44 22.8 Dist: Im 2017-06-02 05:39 23.9

Figure 3.12.: Results of applying OVD to thermal images. It is shown that cassowaries are accurately detected

and localised within these thermal images.
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Figure 3.13.: Results of applying domain adaptation to thermal images. By employing transfer learning, the

detection model is fine-tuned to operate effectively within the thermal image domain.

3.2.3.E. Model Fine-Tuning and Domain Adaptation

To ensure the field model’s effectiveness in different environments and over time, fine-tuning
and domain adaptation are integral parts of the LAARMA system’s development. Fine-tuning
involves adjusting the model based on initial deployment feedback, optimising it for the spe-
cific characteristics of the areas where the system is installed. Domain adaptation, on the
other hand, focuses on modifying the model to maintain high performance despite changes
in environmental conditions, such as weather variations, different lighting conditions, or sea-
sonal changes in animal behaviour. Domain adaptation is also required when the machine
learning approach is applied in different sensor domains. This process involves continuous
learning from new data collected by the deployed units, enabling the field model to adapt
and evolve, thus maintaining its accuracy and reliability in the long term. For the LAARMA
system, one of the challenges is using YOLOv8 for detecting target objects in thermal images.

Figure 3.13 shows that domain adaptation is a promising solution to this challenge.

For roadside animal detection, we can exploit transfer learning to adapt a pre-trained

detection model, originally developed for different datasets, to a new specific detection task.
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Transfer learning is valuable in scenarios like ours where data specific to the target animal
species is limited. By employing this method, we leverage a model that has already been
trained on a large and diverse dataset to recognise general patterns and features, then fine-
tune this model for detecting large animals, such as cassowaries. This approach allows us to
utilise the knowledge the model has already acquired, significantly reducing the need for a

large amount of animal-specific training data.

For the transfer learning in our project, we used a technique that involves freezing some
parameters of the pre-trained model during the training phase for animal detection. This
means we keep certain layers of the neural network, typically the early layers responsible
for identifying basic, universal features like edges and textures, unchanged. Meanwhile, the
later, more task-specific layers are fine-tuned using our field-collected animal dataset. This
strategy not only reduces the computational load and the amount of required training data
but also helps prevent overfitting, especially given the relatively small size of our animal-

specific dataset.

Moreover, to further enhance the model’s performance in animal detection, we imple-
mented data augmentation techniques in our image processing pipeline. Data augmentation
involves modifying existing images in the dataset through transformations, such as rotations,
flipping, scaling, cropping, and changing lighting conditions. These alterations create a more
diverse training dataset, helping the model to become more robust and less prone to overfit-
ting. Training the model on this augmented dataset allows it to learn to recognise the specific
animal species under a variety of different conditions and perspectives, thereby improving its

ability to generalise and perform effectively in the real-world scenarios we aim to address.

3.3. System Testing

3.3.1 System Functions Tests

To validate the various features developed for the large animal detection system, we conduc-
ted a series of outdoor and laboratory tests under different conditions. The primary objective
of these fests is to assess the system’s effectiveness in real-world environments and to ensure

its reliability across different scenarios.
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Figure 3.14.: The St John's Oval in USYD campus used for outdoor tests. The developed system was set up at
the location marked by the blue circle, and the sensors were pointing in the south-east direction,
as indicated by the orange arrow. The testing field stretches more than 230 metres long, from

the system’s location to the St John's College car park in the south.

3.3.1.A. Outdoor Test Location

For our outdoor tests, we selected a sports field that extends over 230 metres within USYD
campus, as illustrated in Figure 3.14. This expansive space provides us with a suitable en-
vironment to rigorously test the working range of the sensor suite. During these tests, we
successfully demonstrated that the developed system is capable of identifying objects at dis-
tances exceeding 200 metres. This long-range detfection capability is crucial for early warning
and timely response in real-world applications, especially in scenarios involving fast-moving

traffic or wildlife.
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3.3.1.B. Preliminary Test for Sensor Detection Range

A preliminary outdoor test was carried out on 5 October 2023, which was at the early stage
of the system development, to gain a better understanding of the effective working range of
the main detection sensors under their designated operational conditions. The tested sensors

included the RGB cameras and the thermal camera.
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Figure 3.15.: The camera images from the preliminary outdoor test. (a), (b), and (c) show images from the
medium-angle RGB camera, the telephoto RGB camera, and the thermal camera, respectively.
The camera images were processed by the pre-trained YOLOv8 model, with the detection results

overlaid on the images.

Some example images in the test are presented in Figure 3.15. Since the pre-trained
YOLOv8 model does not support the detection of cassowaries, the Col in the test was selected
as “person”. Figure 3.15a and Figure 3.15b clearly demonstrate the capability of detecting
the Col more than 100 metres and 200 metres away, respectively, during day time using the

RGB cameras.

Further testing was conducted to reveal the preliminary detection range of the thermal

camera at night. The pre-trained YOLOv8 model was trained using RGB images from COCO
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dataset, which does not contain thermal images. The main challenge in the nighttime test
is that the YOLOv8 model was used in a sensor domain different from the domain it was
trained in. This domain gap usually causes a significant performance drop for most machine
learning models. However, as Figure 3.15¢ reveals, the pre-trained YOLOv8 demonstrates
exceptional detection performance when working with thermal images, managing to detect
the Col more than 150 metres away in the given testing scenario. There is still potential for a
range boost using a smaller FoV lens, a fine-tuned detection model for thermal images, and

other image processing techniques.

Overall, the preliminary test has shown the potential of the selected sensor suite and

YOLOv8 detectors to be adopted as an effective roadside animal detection solution.

3.3.1.C. Comprehensive System Test

A more comprehensive system outdoor test was conducted on 23 November 2023, to validate
various system features that had been developed up to that point. The tested sensors included

the RGB cameras, the thermal camera, and the LiDAR. The main system features tested were:
1. Image processing pipelines
2. Real-time YOLOv8 detection for each camera pipeline
3. Continuous data logging

Figure 3.16 depicts the image frames from the cameras and the YOLOv8 detection results.
As in the previous outdoor test, the object class “person” was selected as the Col in the test.
The detection results from this test are similar to those in Figure 3.15, due to the use of the
same cameras and pre-trained YOLOv8 model in both tests. The main difference is that
the YOLOv8 detectors had been deployed onto the edge computing unit, and all the image

processing pipelines were running in real time in this test.

The outdoor test also served as an opportunity to test the continuous data logging feature.
The preview video and the associated data files were then retrieved from the system for

playback and analysis, as demonstrated in Figure 3.17.

Section 3.3: System Testing

80



G | gl ]
cor ‘EQ".Cpe[rson Q.57

(b)

~ar 0.600.46 Cco
ce vt _car 05 0.78

car N dacar 0.2€ !
zacecar Q:dcar, T person 0.82

person 0.29

(c) (d)

Figure 3.16.: The camera images and object detection results in the comprehensive outdoor test. (a)-(d) show
an image from the medium-angle RGB camera, its digital-zoomed image, an image from the

telephoto RGB camera, and a thermal image, respectively.

3.3.1.D. Testing the Event-Triggering Pipeline

Follow-up testing was conducted when the system development was closer to completion.

The following system features were tested in a laboratory environment:
1. Event-triggering pipeline
2. Event-triggered data logging

At the time of conducting the lab test, the YOLOv8 model had not been trained to support
the detection of cassowaries. Yet, the event-triggering functionality could still be well tested
using a different Col. In this lab test, “tennis racquet” was set as the Col, which means the
system triggers a detection event whenever it detects a tennis or badminton racquet within

its sensor FoV. The results are presented in Figure 3.18, showcasing the successful detection
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(b)

Figure 3.17.: Playback of data logged in the comprehensive outdoor test. (a) shows a snapshot of the 2-by-2
image collage video recorded during the test, with the timestamp printed at the bottom-left corner
of the video. In (b), a screenshot visualises the recorded dense point cloud from the solid-state
LiDAR. It is clearly visible in the point cloud that structural features in the field, such as the rugby
goal posts around 100 metres away, the car park, and surrounding buildings more than 200

metres away, can be distinguished. The size of each grid in (b) is 10 metres.

of a badminton racquet being waved in front of the sensors and how the event-triggering
pipeline managed to pick up this event. The positive detection event then triggered the data
logging as expected. The signal will also trigger the roadside message display when the
system is deployed in the field. The testing results are visualised in Figure 3.18 through the
playback of the first logged data file for this particular event.

3.3.2 Fine-Tuned Detection Model Evaluation

Initially, our YOLOv8 model was pre-trained using the COCO dataset, renowned for its com-
prehensive scope in object detection, segmentation, key-point detection, and captioning. This

dataset contains approximately 328,000 images.

Subsequently, we employed transfer learning techniques to adapt the model for the cas-
sowary dataset. This dataset features synthetic images and field-collected images that are
automatically labelled by the VLM. Transfer learning can potentially affect the performance
of the model initially trained on the COCO dataset. To assess this impact, we conducted a

comparative analysis between the pre-trained and fine-tuned models.
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Figure 3.18.: Testing the event-triggering pipeline in the lab. It involved the system triggering a detection event

when it detected a Col object, which in this test was a tennis/badminton racquet, using its sensors.
The top chart shows the Bayesian filtering results from the multiple image processing pipelines.
The curves indicate the probability of detecting the presence of the racquet within their sensor
FoVs. In this example, both the medium-angle camera image (blue line) and its digitally zoomed
image (yellow line) picked up the racquet in the scene, producing high probabilities of positive
detection. Meanwhile, the fused event detection outcome, represented by the red line, switched
from false (zero in the chart) to true (one). This positive event then triggered the data logging for

the event itself.
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3.3.2.A. Model Definitions

Pre-trained model: This refers to the original model trained exclusively on the COCO dataset.
Fine-tuned model: This model represents the adaptation of the pre-trained model, where

the majority of parameters are frozen, and the model is retrained on the cassowary dataset.

3.3.2.B. Evaluation Metrics

In our experimental evaluations, the primary measure used to assess the model performance
is the Mean Average Precision (mAP). The mAP metric is standard in the field of object detec-
tion, offering a comprehensive assessment by averaging the Average Precision (AP) scores

across all recall levels, which range between 0 and 1.

» Box(P) - Precision: This metric quantifies the accuracy of the bounding box predic-
tions, where higher values suggest a higher ratio of true positive detections to the total

number of positive predictions made by the model

» Box(R) - Recall: This metric measures the ability of the model to correctly identify
all available instances of objects, with higher values indicating a higher ratio of true

positive detections fo the actual number of objects present in the dataset

» mAP50: This represents the Mean Average Precision calculated at an Intersection over
Union (loU) threshold of 0.5, offering a balance between precision and recall for a

binary interpretation of object presence

« mAP50-95: This is an average of the Mean Average Precision values calculated at loU
thresholds spanning from 0.5 to 0.95, in increments of 0.05. It is a more rigorous metric
that takes into account the precision of the bounding box alignment with the ground-
truth across a range of loU thresholds, thus providing a more granular evaluation of

model performance

These metrics collectively offer a comprehensive view of model efficacy, accounting for

both the presence and precise localisation of objects within the images.

3.3.2.C. Preliminary Experiment Results

Utilising transfer learning, the fine-tuned model demonstrates consistency in performance

across all previously established detection categories, as shown in Table 3.1 and Table 3.2.
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Class Images | Instances | Box(P) | Box(R) | mAP50 | mAP50-95
all 260 474 0.755 | 0.51 0.632 0.479
ambulance | 260 64 0917 | 0.844 | 0.904 0.752
bus 260 46 0.659 | 0.696 | 0.792 0.641
car 260 238 0.773 | 0.387 0.55 0.377
motorcycle | 260 46 0.609 | 0.478 | 0.508 0.327
truck 260 60 0.703 | 0.333 | 0.525 0.387
cassowary 260 20 0.867 | 0.326 | 0.513 0.39

Table 3.1.: Performance metrics for object detection across various classes.

Class Images | Instances | Box(P) | Box(R) | mAP50 | mAP50-95
person 1144 2701 0.659 0.6 0.618 0.373
car 1144 5728 0.642 | 0.427 | 0.648 0.392
bike 1144 95 0.472 | 0.558 | 0.488 0.267
motor 1144 322 0.731 | 0.835 | 0.699 0.523
airplane | 1144 66 0.654 | 0.409 | 0.477 0.386
bus 1144 18 0.371 | 0.198 | 0.164 0.119

Table 3.2.: Summary of object detection model performance on thermal image datasets.

This consistency is maintained while successfully integrating the detection of a new class,
namely, cassowary. This integration did not compromise the model’s effectiveness in identi-
fying and segmenting previously learnt classes, indicating a robust adaptation of the model

to new data without losing its proficiency in original tasks.

The performance metrics, particularly the mAP, remained stable or showed minimal vari-
ance, suggesting that the transfer learning process effectively preserved the model’s original
capabilities. Additionally, the model’s ability to detect the cassowary with high precision and
recall highlights the effectiveness of our fine-tuning approach in expanding the model’s de-
tection repertoire without detracting from its existing strengths. Note that these preliminary
results achieved for cassowaries in Table 3.1 are based on only 20 cassowary instances.
More comprehensive and real-world evaluation results after the model was trained with

field-collected data are presented in Section 7.2.2.
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3.4. Conclusions

In this chapter, we have addressed the development of a state-of-the-art system designed to
detect roadside large animals, enhancing road safety and wildlife preservation. The devel-
opment of this system encompasses several key challenges, including the need for efficient
processing and adaptability to different scenarios. Our approach integrates cutting-edge
hardware with a powerful machine learning-based animal detection approach, making it
both cost-effective and efficient for real-time applications. Utilising a suite of advanced de-
tection sensors, the system is designed to operate in various environmental conditions, from

daylight to nighttime settings.

The core strength of this system lies in its innovative use of the self-training machine
learning pipeline, enabling it to learn and identify any large animal species. Data plays a
crucial role in the effectiveness of any machine learning system. Our approach includes an
auto-labelling feature based on OVD, thereby enriching the training dataset with minimal
human inputs. The model undergoes further enhancement through fine-tuning and domain
adaptation. These processes are critical in ensuring the model’s effectiveness across different
environments and conditions. The application of the field model, i.e., YOLOvVS, ensures rapid

and accurate detection, essential for timely responses in dynamic road situations.

The extensive testing and evaluation of the developed large animal detection system have
demonstrated its capability and reliability across various scenarios, highlighting its potential
as an effective solution for roadside animal detection. Outdoor and lab tests have validated
the system’s ability to accurately identify objects at long distances, a critical feature for
providing early warning and response in real-world situations. A key aspect to the system
development is the integration of the YOLOv8 model, which, although initially trained on
standard RGB images, showed promising performance in detecting objects in thermal images
during nighttime tests. The comprehensive system test further validated the functionality
of image processing pipelines, real-time object detection, and continuous/event-triggered
data logging, all running effectively on an edge computing platform. The fine-tuning of
the detection model using transfer learning techniques allowed for the successful addition
of a new detection class, “cassowary”, without compromising the model’s existing detection
abilities. This indicates a robust model adaptation to new data while maintaining proficiency
in original tasks. The stability of performance metrics, particularly the mAP, across various
detection categories, have shown the effectiveness of our approach in expanding the model’s
detection capabilities. These results show that combining advanced sensing technology with
machine learning creates an efficient and reliable system that can enhance both road safety

and wildlife conservation.
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4.1. Introduction

4.1.1 Background

AVCs are associated with substantial costs to individuals, communities, and the environment
each year. In 2004, it was reported that crashes involving animals caused over $1 billion in
vehicle damage annually in the United States [2]. The human and societal costs of injury,
rehabilitation and death cannot be quantified, nor can the effects of AVCs on conservation
efforts. Analysis of crash data in the US between 1965 and 2017 found that there was a
four-fold increase in animal fatalities resulting from AVCs in that time [3]. In countries such

as Australia, many native and protected species are particularly vulnerable [2].

The attitudes of motorists and their knowledge of how best to respond when an animal
in is on the road has been identified as a contributing factor to AVCs occurrence. For ex-
ample, a recent large-scale survey in Hungary explored the habits and attitudes of 1942
drivers regarding AVCs [5]. The results showed that drivers with less experience and fear of
AVCs drove with more confidence, at higher speeds and less vigilance. Additionally, results
showed that as years of driving experience increased, there was an the perceived ability to
handle unexpected driving situations (such as an animal encounter) also increased. Perhaps
unsurprisingly, it was also found that drivers who reported a higher regard for the import-
ance of nature conservation or traffic safety in relation to preventing AVCs reported driving
with more care and attention [5]. Other research has suggested that a lack of knowledge
about the appropriate or correct course of action in the event of an animal encounter also
influences potential AVCs [2, 4, 5]. The nature of AVCs avoidance manoeuvres that a driver
or rider may need to implement, such as swerving to avoid an animal, can also increase
the likelihood of a serious injury crash [4]. While research has shown that the safest solu-
tion for motorists is to simply slow down and (unfortunately) hit the animal, in a study of
crash mechanisms involved in 366 AVCs in Australia, Wilson et al. [7] reported that 58.5%
of AVCs involved the motorist swerving to avoid impact with the animal. Swerving can often
result in loss of control, rollovers and/or colliding with other objects, such as trees, poles, and
guardrails [2, 7].

Road signage is a commonly implemented measure to alert drivers to risks they may en-
counter in the road environment. While static road signage has been shown to have some
effect in mitigation the risk of AVCs (e.g., [48]), a recent review investigating the effectiveness
of road warning signage by Tryjanowski et al. [45] suggests that principally, the main re-

sponse elicited by a motorist to a warning sign is merely recognition as opposed to motivating
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behaviour change and suggest that further research is required to enhance the effectiveness
of such signage to extend beyond mere recognition to ensure action is taken. VMS may
provide a more effective means to alert drivers to the presence of animals and encourage
safer driving behaviours due to the ability to display a series of changing messages across
a single LED screen. Currently, research examining the effectiveness of VMS in influencing
driver behaviour is limited. However, a recent Australian study investigating the effects of
roadside VMSs displaying dual-screened messaging aimed to encourage motorists to stay
within the speed limit showed that the proportion of road users exceeding the posted speed
limit was consistently lower when the anti-speeding VMS were displayed [60]. The results
also showed a residual effect, whereby a reduction in mean speeds and lower proportion of
drivers exceeding the speed limit continued to be observed for the week following the re-
moval of the VMS [60]. These findings, while not related to AVCs suggest that roadside VMSs
which not only alert motorists to the presence of a potential road hazard (such as nearby
animal), but also offer driving strategies (such as slowing down) to navigate the situation

safely, may reduce the risk of road collisions.

The current program of research, insofar as the messaging component of the project,
consisted of two studies with the purpose of developing and evaluating messages that sought
to, (i) alerts motorists that an animal, specifically a cassowary, had been detected in the road
environment, and (ii) encourage moforists to slow down and scan the road environment. This
project applied the SatMDT [1], see Figure 4.1, to develop and evaluate the messaging. As
shown in Figure 4.1, the SatMDT includes four steps: Step 1: getting to know the audience,
Step 2: development of the message content, Step 3: testing the message content, and Step
4: evaluating the message content. Study 1 drew upon Step 3 of the framework, while Study 2
drew upon Step 4. The SatMDT has been successfully applied in previous research to develop
and evaluate anti-speeding messages [195], messages designed to reduce smartphone use
among young drivers (e.g., [196, 197]), and messages promoting intentions to use connected

vehicle technologies [57] to name but just a few applications (see [58] for more examples).

4.1.2 Method

Study 1 comprised eight focus groups with 36 drivers (Mean age = 42.72 years; 19 females)
and explored their perceptions towards a series of message concepts designed to appear
on roadside VMSs. The findings from the focus groups were used to develop four message
concepts to be tested in Study 2. Study 2 was a between-groups design and comprised 557
drivers (Mean age = 50.29 years; 350 females) who completed an online survey. Participants

were randomly allocated to one of five conditions (i.e., to view one of the four message
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Figure 4.1.: The Step approach to Message Design and Testing [1].

concepts or the control, no message condition). Participants allocated to the four message
conditions were asked about their perceptions towards the message content, responded to
items relating to message acceptance (i.e., relating to how directly and indirectly effective the
messages were), and asked about their preferences regarding the driving strategies offered
as part of the message. The study was led by Prof loni Lewis, with assistance from Ms Nyree
Gordon and Ms Melinda McDonald.

4.1.3 Key Findings

Overall, all four message concepts evaluated in Study 2 performed consistently well across all
direct and indirect measures of effectiveness, which suggests that the implementation of any
of these concepts would likely have the intended effects on driving behaviours. However, there
were instances where some concepts appeared to outperform others on specific measures
and suggests that there is scope to selectively apply messages according to the parameters
that are considered of highest priority. For screen 1 of the message, a greater portion of
participants across both studies reported that it would be more effective to identify the type
of animal on the signage compared to participants who reported that the animal should not
be identified. In Study 1 (where participants were able to compare multiple message concepts),
most participants preferred the combination of both text and image to specify the type of
animal. For screen 2, there were no significant differences in how useful participants perceived

the four driving strategies to be; however, participants across both studies commented that the
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slowing down strategy should be presented before the scanning strategy. Participants across
both studies emphasised that it was important that motorists understood that the message
was a real-time warning and expressed concerns that motorists might become complacent
if the sign were to remain activated and/or they did not come across any animals while
driving. This provided support for leaving the sign blank and only ‘flashing” a message when
an animal had been detected. The findings also supported the potential value of future use of
this technology being promoted through use of public education campaigns so that motorists

could understand what it is and how it works.

4.1.4 Chapter Structure

Section 4.2 outlines the findings from Study 1 which consisted of eight in-person focus groups
to test a series of 20 message concepts (see Appendix A for the message concepts). The
findings from Study 1 were used to inform the develop of four message concepts to be eval-
vated in Study 2. Section 4.3 outlines the findings from Study 2, which involved evaluating
the four message concepts in terms of their effectiveness via an online survey with a larger
sample of motorists. Section 4.4 presents the overall conclusions emerging from this pro-
gram of research as well as practical consideration for implementing the messaging in the
forthcoming driving simulator study and the on-road field trial in North Queensland, both

studies within the subsequent research to be conducted in the overarching LAARMA project.

4.2. Study 1

4.2.1 Overview

Study 1 explored participants’ responses to 20 message concepts designed to be displayed
on a VMS to inform motorists that an animal (specifically a cassowary in the context of this
research) has been detected on or near the road (Step 3 of the SatMDT). This step of the
conceptual framework focuses on ensuring that members of the intended target audience
respond to the messaging as anticipated. The message concepts were developed based
on broader literature regarding the use of roadside messaging alerting road users to the
presence of animals and drew upon key constructs (i.e., emotional appeal and modelling
of behaviour strategies as outlined in Step 2 of the SatMDT) that have been demonstrated

to enhance message effectiveness (e.g., [60]). The message concepts developed by Prof
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loni Lewis [IL] for Study 1 were designed to alert passing motorists that an animal had been
detected in the vicinity and to encourage motorists to engage in two key driving behaviours—
(1) slow down, and (2) scan the road environment. In line with Step 3 of the SatMDT, the
purpose of Study 1 was to test whether the message concepts elicited the intended response
by the target demographic (i.e., Australian motorists). Specifically, the concept testing sought
to determine whether the messages were (a) effective in informing motorists that the message
was a real-time warning that an animal was in the immediate road vicinity, and (b) whether
the driving strategies offered as part of the message would motivate motorists to slow down
and scan the road environment as directed. The message concepts tested in Study 1 are
presented in Appendix A.

4.2.2 Method

4.2.2.A. Participants

Participants were recruited by Farron Research, an Australian market recruitment company.
Participants were required to be aged 18 years or older, reside in Australia, hold a valid
motor vehicle, or motorcycle licence, and drive/ride for at least one hour per week. Thirty-
six drivers were recruited in November 2023 to participate in one of eight in-person focus
group sessions to discuss the message concepts. Participants were aged between 23-77
years (Mean age = 42.72 years, SD = 16.31). All participants, resided in Queensland, held
an open driver licence, and reported holding a licence between 6 and 60 years (M = 23.83,
SD = 14.90). Participants drove for an average of 11.22 hours per week (SD = 10.29) with
most participants reporting driving between 5 to 12 hours (55.6%, n = 20). All participants
received a gift voucher for AUD 80 for participating in Study 1.

Demographic Survey

The brief demographic survey (see Appendix B) collected information about participants’
gender, age, state of residence, postcode, type of driver licence, and how long they have

held their licence. On average, participants completed the questionnaire in 5 minutes.
Focus Group

Eight in-person focus groups were conducted at the QUT, Kelvin Grove campus between
20 and 23 November 2023. The focus groups were guided by a semi-structured interview

schedule (see Appendix C) which comprised questions consistent with well-established mater-
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ials and procedures used when undertaking concept-testing in accordance with the SatMDT
[11. The purpose of these focus groups was to concept-test a series of, predominantly dual-
screened, message concepts to be displayed on VMSs. Each focus group was audio recorded
and facilitated by two researchers (Melinda McDonald [MM] and Nyree Gordon [NG]). The
focus groups consisted of between 3 to 5 participants and, on average, group discussions las-
ted 1 hour. Salient elements of the focus group discussions and quotes offered by participants

were noted excluding any personally identifying information by NG during the discussion.

4.2.2.B. Procedure

The university’s Human Research Ethics Committee approved the study prior to its commence-
ment (QUT Reference Number: 7663). Consent was obtained by participants on arrival by
completing and signing a consent form before the focus group commenced. Participants
were first asked to complete the demographic questionnaire prior to participating in the
group discussions. In the group discussions, the message concepts were presented to parti-
cipants visually, as a VMS-style mock-up, via a power-point presentation projected on a large
screen. To investigate the legibility of the messages in the VMS format, the group facilitators
refrained from reading the messages out loud unless required. The message concepts were
presented in three sections: (1) Text Only, (2) Image and Text, and (3) Image Only. After
presentation of a message concept, participants were invited to share their perspectives to-
wards the message and to offer suggestions to improve the message content. The same
process was repeated for a total of eight Text Only message concepts, six Image and Text
message concepts, and eight Image Only message concepts. All message concepts that were

tested have been included in Appendix A.

4.2.3 Results

4.2.3.A. Focus Group

The following section presents the findings from the focus group discussions. Specifically,
it will detail participants’ perceptions about each of the VMS messages concepts that were
explored. Guided by questions in the interview schedule, thematic analysis was undertaken
based on post-focus group discussions amongst the project team and aspects considered un-
clear and/or requiring further justification were identified and resolved in the following focus
groups. The findings presented herein include de-identified quotes, as noted by NG during the

group discussions, as supporting evidence of themes. Quotes are attributed to participants in
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a way to protect their confidentiality (i.e., only reported in relation to a participant’s gender

and their approximate age).
Comparison of Responses Between Participants

Overall, most messages were associated with relatively consistent responses from the
study participants irrespective of their age and gender. Message C of the Image and Text
concepts appeared to elicit some mixed responses across age groups, with older participants
tending to react negatively to the Screen 2 message (‘Reduce your speed. Be alert.’), while
younger participants tending to be more in favour of the message. However, as the reasons
offered for these reactions were not consistent within age-similar groups, this discrepancy is
likely due to individual preferences rather than a broader age-related effect. Moreover, the
most frequent negative commentary about this message across all participants was that there
were too many words, which suggests that shortening the message may prompt more positive
responses. In addition, younger participants tended to respond favourably to Alternative Text
Message C1 (‘Hazard ahead’), while most older participants were indifferent to the message
or likened it fo a road works sign. However, as there was an overarching preference for
other message concepts that were tested, it was deemed unnecessary to investigate these
differences regarding this one particular message any further. Hence, the following summary
of key findings pertains to the overall sample. In addition, as there were no dual-screen
message concepts (i.e., a Screen 1 and Screen 2 combination) that were preferred as a set in
and of themselves, the findings for the messaging presented on Screen 1 and Screen 2 have

been considered separately in each section.
Text Only Message Concepts
Screen 1

There were five different Text Only message options for Screen 1: Cassowary About (Mes-
sages A-D), Help Protect Our Cassowaries (Message E), Please Protect Our Native Fauna (Mes-
sage F), Cassowaries About (Alternative Text 1), and Cassowary Recent Sighting (Alternative
Text 2). The Text Only messages shown during the focus groups can be found in Appendix A
(Figure 8.1 and Figure 8.2). For Messages A-D and Alternative Text 1, the consensus amongst
participants was that ‘cassowary’ (singular) was easier to read and understand than ‘cas-
sowaries’ (plural), although a small number of participants reported that ‘cassowaries’ de-
noted more of a hazard. All participants also agreed that the word ‘about’ was ineffective,
citing that the term was “vague”, relied on the drivers understanding Australian vernacular,
and did not imply the presence of a real-time hazard. Participants frequently offered ‘ahead’,

‘detected’, or ‘seen’ as alternatives to better relay the immediacy of the message. Messages
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E (Help Protect Our Cassowaries) and F (Please Protect Our Native Fauna) also consistently
elicited negative responses, with participants stating that the messages were more like con-
servation campaigns, rather than an active warning that an animal had been detected on or
near the road. Additionally, participants reported that the number of words used made the
sign look busy and difficult to read. Most participants also agreed that the Alternative Text
2 message (Cassowary Recent Sighting) was vague, and that the term ‘recent sighting’ could

be interpreted to mean different time frames (e.g., hours, days, weeks etc).
“I'm waiting for the next screen to tell me where | can donate money fo.” (Male, mid-40s)

“Looks more like a 24/7 campaign sign.” (Female, mid-30s)

Screen 2

There were five different Text Only message options for Screen 2: Slow Down. Look
Around. (Message A), Slow down. Monitor ahead (Message B), Scan. Check. Slow Down
(Messages C/E) and Look Out and Slow Down (Messages D/F). Of these messages, most
participants indicated a preference for Message D/F, citing that it was concise and offered
clear instructions using plain English. Many participants also suggested that the ‘and’ be
removed and to reverse the order of the statements so that ‘Slow down’ was presented first.
Most participants reported disliking Message A (Slow Down. Look Around). The ‘Look Around’
component raised concerns that the direction could be interpreted as an invitation for drivers
to look for the animal as if it were an attraction, rather than a driving hazard. Message
B (Slow down. Monitor ahead) received mixed responses, with some participants reporting
that the term ‘Monitor ahead’ provided clearer direction than ‘Look Around’ (Message A).
However, most did not like the word ‘monitor’ for reasons including that it might not be easily
understood by those who do not speak English as their first language, it implied that the
driver’'s behaviour was being monitored, and that it may cause confusion due to the word
having multiple meanings (e.g., monitor lizard). Most participants reported liking Message
C/E (Scan. Check. Slow Down) more than A and B because it was short and simple; however,
they also reported that ‘scan’ and ‘check” meant the same thing and it was redundant to

include both. Of the two words, ‘scan’ was preferred.

In addition, there were six Alternative Text message options offered at the end of the
section: (A) Hazard ahead, (B) Watch out for animals on roads, (C) Slow down. Wildlife on
road, (D) Be alert. Wildlife on road, (E) Be alert. Wildlife detected, and (F) Wildlife on road.

Proceed with Caution. Of these alternative wordings, messages A, E, and F generated the
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most discussion. As previously noted, Message A (Hazard ahead) was generally preferred by
younger participants. Those in favour of the message (regardless of age group) stated that
the message made it clear that the animal (whose presence was noted on Screen 1) posed a
potential driving threat. However, most participants preferred Message E (Wildlife detected),
specifically the word ‘detected’ as it was seen to clearly indicate that the animal was in the
immediate vicinity. Many participants went on to suggest that ‘detected’ ought to replace
‘about’ in the Screen 1 messages. Several participants also liked Message F (Wildlife on road.
Proceed with Caution) as the ‘wildlife on road” component made in clear that the message
was not a general warning about animals inhabiting the area, and the ‘proceed with caution’
component gave drivers the freedom to adjust their driving behaviour according to what

they believed would be the safest way to approach the situation.

“E gives a real sense of immediacy. It’s effective.” (Female, younger driver)

Image and Text Message Concepts
Screen 1

There were four message options shown for Screen 1 in the Image and Text section: An
image of a cassowary with no text (Message A), an image of a smaller cassowary with the
text ‘Cassowary About’ (Message B/D), the same cassowary image with the text ‘Cassowaries
About’ (Message C/E), and an image of a cassowary with the text ‘Help Keep Them Safe’
(Message F). The Image and Text messages shown during the focus groups can be found
in Figure 8.3 of Appendix A. Message A received mixed responses. Some participants pre-
ferred the image citing that it was attention-grabbing and could be “processed more quickly
than words”. While others reported that the image alone lacked urgency and did not make
it clear that the animal has been detected and could be interpreted as “more sight-seeing
advice”. For Messages B-E, it was unanimously agreed that the smaller cassowary did not
look like (or depict the scale of) the animal and might lead to confusion for motorists. Like
the responses offered in the Text Only section, participants reported the same preference for
the singular ‘cassowary’ as opposed to ‘cassowaries’ and concerns about the word ‘about’.
However, most participants indicated that having an image and text on Screen 1 would be
useful for drivers to understand what animal to expect in the area, with many participants
suggesting similar responses that were offered in the previous section (e.g., ‘Cassowary de-
tected’). All participants reported disliking the (single-screen concept) Message F, stating that

it was reminiscent of a “activist” or “Greenie” sign.
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Screen 2

Participants were shown five options for Screen 2. Messages A, B, D, and E were the
same as messages offered in the previous Text Only section. Participants did not report any
changes in preferences for these messages when paired with the new Screen 1 image or
image/text message. Message C read ‘Reduce Your Speed. Be Alert’. As reported in the
previous section “Comparison of Responses Between Participants”, this message received
mixed reactions. Those in favour of the message found it to be “compelling”, “clean” and
“tangible”, and that it would encourage them to “take more notice” of the signage. Whereas
those who disliked the message considered it to be “vague”, “not enforceable”, and too similar
to road works signage. However, it was commonly mentioned (from both the participants
who liked the message and those who did not) that the message had too many words, with

some participants suggesting that ‘your’ could be removed.

“The picture is processed more quickly than words and makes me more likely to read the

next message. And we always remember the last thing we read.” (Female, mid-20s)

Image Only Message Concepts

The Image Only section consisted of eight single-screened messages featuring a cassowary
pictogram on each, four of which were monochromatic (amber, as used for the messages in
the previous sections) and the other four incorporated additional colours (see Appendix A,
Figure 8.4). Of the monochromatic images, most participants preferred Message A3 stating
that the larger cassowary would be useful to “visualise” the size of the animal, and that the
exaggerated crest made it look “scarier” and “dangerous”. One participant preferred Mes-
sage A2 stating that it was a more accurate depiction of a cassowary, and no participants
preferred Message Al or A4. Of the coloured images, most participants preferred Message
B, with some participants suggesting that Message Bl could be improved by having Mes-
sage B2's larger crest. Specifically, participants liked the larger scale of the cassowary and
commented that the use of blue and red on the neck would help drivers identify the animal.
Many participants also reported liking Message B, stating that the cassowary’s white body
would be eye-catching. However, others expressed concerns that the additional bright col-
ours looked “touristy” (as opposed to the mostly amber Message B1 which looked more like
a “warning”), and that the white body might cause confusion given that cassowaries do not
have white plumage. No participants preferred Message B3 or B4. All participants agreed
that an Image Only message would not be as effective as a text plus image message, having

an image alone does not suggest that there is a potential hazard or danger ahead and may
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be seen as an invitation to drivers to search from the cassowary out of interest.

“The colours in Bl and B2 are better for identifying, if people don’t know what a cassowary
looks like.” (Female, mid-50s)

General Comments

In addition to discussing the specific message concepts shown during the focus groups,
participants were also invited to share their suggestions to improve the messages and express
any other ideas that may be of interest to the research. Three themes were identified from
these discussions—(1) whether the message should refer to a specific animal, (2) ensuring
public awareness of the animal detection technology, and (3) suggested improvements for

the design of the VMS. These themes are discussed below.
Reference to a Specific Animal

Some participants questioned whether it was necessary for the signage to indicate the
presence of a specific animal (i.e., cassowary), and suggested that using a broader term
such as ‘animal’, ‘large animal’, or ‘wildlife’ might be more effective. Specifically, these
participants expressed the following concerns: (1) that some drivers might try to search for
the animal (and in the process, potentially pose a road hazard for other drivers by slowing
excessively or stopping), (2) the technology responsible for detecting the cassowary may fail
to recognise other nearby animals (which may also create a road hazard), and, consequently,
(3) drivers may become so focused on avoiding a cassowary that they fail to notice other
driving obstacles and hazards. However, other participants reported that by displaying the
specific animal on the sign, it would enable drivers to “know what to look for”, where to
look for it (e.g., looking closer to the ground for smaller animals), and to adjust their driving
behaviour according to their understanding of the behaviours of the specified animal. All
participants, regardless of their preference for a specific or generic term for the animal,
agreed that it was important that the message implied the real-time presence of the animal

and the potential danger it posed.
Public Awareness of Animal Detection Technology

Most participants commented that raising public awareness of the animal detection tech-
nology would be “necessary” to accompany the implementation of the signage to ensure
drivers were aware of the real-time nature of the message. Some participants indicated that

the public awareness campaign should be delivered via digital media (e.g., television, social
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media), while others suggested that static road signage in nearby areas (e.g., billboards) may
be useful. One participant suggested information leaflets could be distributed to individuals
hiring rental cars in relevant areas to alert tourists to the technology and associated mes-
saging. In lieu of a public awareness campaign, some participants suggested additions to
the signage that would better indicate that real-time nature of the message. Suggestions
included showing the time that the animal was last seen, a counter showing the number of
times the animal had been detected in a specified time frame (e.g., 1 hour, 24 hours), or a
colour coding system that indicated how close the animal is from the signage. However, the
addition of such aspects would need to be done so carefully as a consistent finding was the
desire for succinct, easy-to-read and understand message concepts so any additional details

may compromise the simplicity and effectiveness of the messaging.
Improvements to VMS Design

While evaluating the message content, participants often suggested improvements to the
VMS design. Of the design elements, the colour scheme was most frequently commented
upon. Most participants expressed a preference for incorporating colours other than amber
for “emphasis”, and to combat “sign fatigue” by differentiating these signs from roadworks
and other common road signage. Many participants suggested making key words (e.g., de-
tected, slow down) red to promote urgency, while a small number of participants suggested
green due to its association with existing wildlife signage. However, some participants ex-
pressed concerns that additional colours/specific colours could affect readability for some
drivers (e.g., older drivers, individuals who experience colour-blindness). Participants also of-
ten commented on the legibility of the text, noting that minimal words and thicker lines were
preferred to enhance readability. Overall, participants did not frequently comment on the
use of uppercase versus title case lettering, and the comments that were offered were mixed.
Some participants reported disliking uppercase noting that it was “too much’ and seemed
“rude”, while others considered uppercase easier to read and denoted the need for action.
Title case was generally well received, especially for the Screen 2 “informative” messages.
A small number of participants also commented that the use of full stops in the signage was
“weird” and “unnecessary”, and if any punctuation were to be included, it ought to be an

exclamation mark following key statements (e.g., Slow down!).

4.2.4 Summary of Study 1

Study 1 involved concept-testing, conducted in accordance with the SatMDT, of 20 message

concepts designed to be displayed on a VMS. The concepts were designed to inform motorists
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that an animal (specifically a cassowary in the context of this research) has been detected

on or near the road. The following points highlight the main findings from Study 1:

« For Screen 1, most participants agreed that including text and an image of a cassowary
would be most effective (relative to the text-only or image-only options). Most parti-
cipants also reported disliking the term ‘about’ (e.g., ‘Cassowary About’), and offered
alternatives such as ‘detected’, ‘ahead’ and ‘seen” which were perceived to make to
clearer than a cassowary was in the immediate vicinity. A small number of parti-
cipants reported a preference for using a broader term (e.g., animal, wildlife) rather
than identifying the specific animal (i.e., cassowary). However, most agreed that nam-
ing the animal would be more useful, and that the singular term “cassowary” was

preferred to use of the plural “cassowaries” due to its brevity and legibility.

+ For Screen 2, most participants agreed that the strategy ‘Look Out and Slow Down’
would be most effective, with the caveat that ‘and’ should be removed to make the
statement more succinct. Participants offered mixed responses to the similar strategy
‘Reduce your Speed. Be alert.’, with some responding positively and others negatively.
However, most participants agreed that regardless of the specific wording, the directive
to slow down should be presented first (i.e., at the top of the screen) and emphasised
that the language used should be short, sharp, and written in plain English. Regarding
the cassowary images, participants unanimously reported a preference for the taller
cassowary compared to the shorter cassowary, and most participants reported a pref-
erence for the cassowary to have a larger crest compared to the smaller crest. When
comparing the monochromatic (amber only) images to the coloured images, most
participants agreed that the use of colour was more attention-grabbing and, by high-
lighting the distinct colourings of the cassowary’s neck, would help motorists identify

the animal.

+ In terms of design elements, several participants suggested the use of different colours
for the text to make the messages more “striking” and set them apart from commonly
observed road signage (e.g., roadworks). However, it is difficult to determine which
colours may be most suitable for this purpose. For that reason, retaining the amber
font may be appropriate for the trial and future research could potentially investigate
the effects of different font colours. Some participants noted a preference regarding
the typography (e.g., uppercase versus title case); however, most participants were
indifferent provided that the text was legible, and that the message was short, sharp,
and simple. It appeared that a combination of font sizes may be best for the messaging

in this trial - with uppercase on Screen 1 (to alert motorists to there being a cassowary
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detected) and the behavioural strategies on Screen 2 being presented in title case.

» Overall, regardless of their preferences for the message content (on either screen),
most participants emphasised that it was important that the message must convey the
real-time nature of the warning, and that the presence of the animal is understood
to be a road hazard (rather than a local attraction). Most participants also suggested
that the implementation of the signage should be accompanied by a public campaign
which promotes the use of the animal detection technology to help drivers understand
the specific purpose of this signage (acknowledging that this campaign still may not

always reach all who may be driving in the area such as tourists).

4.3. Study 2

4.3.1 Overview

Study 2 evaluated the effectiveness of four message concepts (as per Step 4 of the SatMDT)
that were developed according to the findings from the previous concept-testing study. This
final step of the SatMDT is designed to measure both acceptance (via measures of attitudes,
intentions, willingness, and message effectiveness) and rejection of messaging. An additional
outcome measure includes the third-person effect (TPE). The TPE refers to the extent to which
a participant perceives themselves and others (in this case, other motorists) to be influenced
by a message. There are two types of TPEs: the classic TPE and the reverse TPE. The classic
TPE refers to the extent to which an individual perceives that the message will have more
impact on others rather than on themselves and the reverse TPE refers to the extent to which
an individual perceives that the message will have more impact on themselves than on others
[198, 199]. From a message effectiveness perspective, reverse TPEs are encouraging as they
indicate greater perceived influence on oneself than others and evidence has shown such

TPEs to be associated with increased reported intentions to adopt a message’s recommend-
ations [198].

The findings from Study 1 revealed that there was some concern regarding whether (a)
drivers would understand that the message was a real-time warning (as opposed to a gen-
eral or advisory message), and (b) that the message might inadvertently encourage risky
behaviour through motorists changing their behaviour, such as stopping suddenly on the
road in an effort to see the cassowary (as per the message). Thus, to further investigate

these concerns, Study 2 also assessed some relatively unique outcome measures of mes-
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sage effectiveness relevant for this specific context and which were motorists’ thoughts about
the perceived immediacy of the message and the extent to which they thought they may

adversely change their driving behaviour upon seeing message.

4.3.2 Method

4.3.2.A. Participants

A total of 557 participants aged between 19-89 years (Mean age = 50.29 years, SD = 13.96)
were recruited by Farron Research, an Australian market research recruitment company.
Participants completed the online survey between 7 December to 13 December 2023. As per
the previous message concept-testing study (Study 1), participants were required to be aged
18 years or older, reside in Australia, hold a valid motor vehicle or motorcycle licence, and
drive/ride for at least one hour per week. All participants received AUDI5 for completing
Study 2. Like the participant sample in Study 1, most participants held an open licence
(96.4%). Participants in Study 2 reported holding their driver licence for between 1-73 years
(M = 30.87 years, SD = 14.36) and reported driving an average of 9.04 hours per week (SD

= 7.86). The socio-demographic characteristics of participants are reported in Table 4.1.

4.3.2.B. Design

Consistent with the methods and material recommendations of the SatMDT [1], a between-
groups design was employed meaning that participants were randomly assigned to view
only one of four message concepts (experimental condition) or were not shown a message
(control condition). The intent behind exposing participants to one message only was to
elicit responses based on the message they had seen, rather than offering comparative
judgements regarding the effectiveness of different messages they had seen [1]. Mock designs
of how the messages would appear as a roadside VMS, the intended display medium for the
project’s subsequent on-road trial, were created and used as the stimulus materials tested
in the study. The four message concepts that were tested are presented in the section that
follows (noting again that these were identified as a result of the findings from Study 1).
Consistent with conceptual recommendations, the messages all contained information that a
cassowary (or animal, in the case of Concept 3) had been detected to first raise attention of
the issue at hand. Then, this information was followed by clear and tangible strategies (i.e.,
aligning with the concept of ‘response efficacy’ [55]) as to what a motorist could and should

do in that situation. As Figures 4.2, 4.3, 4.4, and 4.5 show, in most instances, the messages
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Female 350 | 62.8

Gender Male 206 | 37.0
Other 11020

Prefer not to say 0] 0.00

Queensland 98 | 17.6

New South Wales 78 | 14.0

Victoria 87 | 15.6

Australian state or | Australian Capital Territory | 78 | 14.0
territory of residence | g4yih Australia 80 | 14.4
Tasmania 65| 1.7

Western Australia 41| 7.4

Northern Territory 30| 54

Learner 3] 05

Provisional 1 6 1.1

Licence Type Provisional 2 6 1.1
Open 540 | 96.4

International 2| 04

Table 4.1.: Socio-demographic characteristics of participants in Study 2.

involved text only with the exception to this being Concept 2 which also incorporated a figure

of a cassowary accompanying the words “Cassowary Detected”.

As previously noted, participants were randomly allocated to one of the four experimental
message conditions or the control (no message) condition. Table 4.2 lists the number of par-
ticipants assigned to each message condition and the gender proportion and average age of
participants in each condition. As shown in Table 4.2, the average age of participants in each
condition ranged from 49 to 51 years, indicating that Study 2 captured the perspectives of an
older cohort. However, based on the findings of the focus groups in Study 1 (see subsection
“Comparison of Responses Between Participants” in Section 4.2.3.A), there was little evid-
ence fo suggest that participants’ age would influence their perspectives regarding message

effectiveness, and thus the findings, of the current study to evaluate message effectiveness.
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Condition n | Mage (SD) | Gender (% females)
Message concept 1 111 | 50.79 (13.74) 68.5
Message concept 2 N2 | 49.33 (14.16) 66.1
Message concept 3 107 | 51.00 (14.51) 67.3
Message concept 4 11 | 50.31(13.75) 59.5
No message (control) | 116 | 50.07 (13.83) 53.4

Table 4.2.: Number of participants in each condition.

4.3.2.C. Measures

The online survey consisted of five parts. All participants completed Part A: Demographics,
and Part B: indirect measures of message effectiveness prior to being shown a message. As
the terminology implies, indirect measures of effectiveness are those that relate to individuals’
attitudes and intentions, and which are assessed without direct reference to or necessity to
have viewed a message. In contrast, in Part C, the direct measures of message effectiveness,
only participants in the experimental condition completed this section. Once again, as the
terminology implies, direct measures of message effectiveness assess individuals’ responses
about messages directly and, thus, require a participant to have seen a message. Exper-
imental condition participants then continued on to complete Part D of the survey which
assessed the indirect measures of message effectiveness once again but this time, after they
had seen a message. Participants in the experimental condition thus responded to these
items both before viewing the message concept and again after they had viewed the image
with the intent being to explore any changes to responses following exposure to the message.
Participants in the control condition only responded to these items once. Finally, experimental
condition participants completed Part E of the survey which assessed participants’ preferred

message strategies. A copy of the study survey is presented in Appendix D.
PART A: Demographics

Part A included demographic items examining participants’ gender, age, state of residence,
postcode, type of driver licence, how long they have held their licence, and how many hours

they drive in an average week.
PART B: Indirect Measures of Message Effectiveness Prior to Seeing a Message

The indirect measures of message effectiveness comprised items examining participants’
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acceptance of messaging alerting them about an animal being on or near the road through
three constructs (attitudes, intentions, and willingness) examined across two key behaviours;
namely, slowing down and scanning the road environment. These two behaviours repres-
ented the behaviours that the messages were intended to encourage. Responses relating to
these two behaviours were also assessed across two contexts, when driving during the day
and when driving at night. The inclusion of both day and night contexts was to examine
whether there were any differences in the effectiveness of the messaging based on visibility

of the road context to which the messaging was alerting a motorist to.
Attitudes

Attitudes towards slowing down and scanning the road environment (during the day and
during the night) were measured using three semantic differential scales (i.e., “To what extent
would slowing down after seeing messaging about an animal being on or near the road
be...” and “To what extent would scanning the road environment after seeing messaging
about an animal being on or near the road be..."). Participants responded to items on 7-
point scales ranging from (1) Unsafe to (7) Safe, (1) Bad to (7) Good, and (1) Unwise to (7) Wise.
As displayed in Table 4.3, these items formed reliable scales for each behaviour (slowing
down/scanning) across both times of day (day/night) in the experimental and the control
conditions. Higher scores were associated with more favourable attitudes towards engaging

in the specified driving behaviour and thus the desired behaviour.

Condition Slowing Down Scanning

Day a | Night a | Day a | Night «

Experimental | .90 .94 .93 .95

Control 87 91 .94 .95

Table 4.3.: Reliability of attitude scales (pre-message exposure).

Intentions

Intentions to slow down and to scan the road environment if messaging about an animal
being on or near the road had been seen (during the day and during the night) were meas-
ured using four items (i.e., “I intend to slow down”, “It is likely that | would slow down”, “I
intend to scan the road environment” and “It is likely that | would scan the road environ-
ment”). Participants responded to items on a 7-point Likert scale ranging from (1) Strongly
disagree to (7) Strongly agree. These items formed reliable scales for each behaviour (slow-

ing down/scanning) across both times of day (day/night) in the experimental and control
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condition (see Table 4.4). Higher scores were associated with greater intentions to adopt the

specified driving behaviour.

Condition Slowing Down Scanning

Day 7 | Night 7 | Day r | Night r

Experimental | .77* 87" .83* .89*

Control .85* .85* TJ7* .90*

*p < .001

Table 4.4.: Reliability of intention scales pre-message exposure.

Willingness

Willingness to slow down and to scan the road environment (during the day and during the
night) were measured using two separate items (i.e., “How willing would you be to slow down
after seeing messaging about there being an animal on or near the road?” and “How willing
would you be to scan the road environment after seeing messaging about there being an
animal on or near the road?”). Participants responded to the item on a 7-point scale ranging
from (1) Not willing at all to (7) Very willing. Higher scores reflected greater willingness to
perform each respective behaviour and thus indicative of greater willingness to perform the

desired behaviour.
Likelihood of stopping suddenly

Several participants from the focus groups in Study 1 expressed concerns that the messages
might encourage some drivers who are interested in seeing a cassowary to stop suddenly,
potentially creating a road hazard. To measure the likelihood that participants would react
in this way (while driving during the day and during night), a single item was included which
asked “If you were driving along a regional road in an area you were unfamiliar with and
saw messaging about there being an animal on or near the road, how likely do you think
you would be to just stop suddenly in an attempt to see the animal?” Participants responded
to the item on a 7-point Likert scale ranging from (1) Extremely unlikely to (7) Extremely likely.
Higher scores reflected a higher likelihood of stopping suddenly after viewing the message

and thus was indicative of the undesired response.
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PART C: Direct Measure of Message Effectiveness
Message Effectiveness

Message effectiveness was measured by asking participants to indicate how “convincing”
and “persuasive” they thought the message was (i.e., “How convincing do you think the mes-
sage was?”; “How persuasive do you think the message was?”) on two separate 7-point Likert
scales ranging from (1) Not at all convincing/persuasive to (7) Very convincing/persuasive.
These items formed a reliable scale (r (439) = .79, p < .001), with higher scores reflecting

greater message effectiveness.
Third-Person Effect

The third-person effect (TPE) is a perceptual phenomenon based on a judgement that
individuals tend to make regarding the perceived influence of a message on themselves
personally relative to others (or third persons) [200]. The TPE represents a key outcome
measure identified for evaluation of message effectiveness in accordance with the SatMDT [1].
The third-person differential perception score is calculated by subtracting perceived influence
of a message on oneself mean score from the perceived influence on others mean score.
When considering message influence, a reverse TPE is advantageous as it suggests that

individuals consider a message as likely to influence them more than others (see [198]).

The TPE was measured through asking participants in the experimental conditions to rate
the extent to which 1) themselves, 2) other motorists, and 3) other motorists of a similar age
and gender, would be influenced by the message (i.e., “How much would you yourself/other
motorists in general/other motorists of a similar age and gender to you, be influenced?).
Participants responded to items on 7-point Likert scales ranging from (1) Not at all influenced
to (7) Very influenced. Two third-person differential perception scores were created with
negative mean scores indicating more influence on self than others and positive mean scores
indicating more influence on others (i.e., other motorists in general, and other motorists of a

similar age and gender) than self.
Message Rejection

Message rejection was measured using five items (i.e., “If you were driving along and
saw this messaging, to what extent would you agree with the following statements?”), with
participants in the experimental conditions providing responses to five behaviours: 1) Assume
it was a general warning about animals in the area 2) Assume it was a real-time warning

about an animal being on or near the road at that time, 3) Stop suddenly in your lane to
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try and see the animal, and 4) simply ignore the messaging. Participants answered these
items through 7-point Likert scales ranging from (1) Strongly disagree to (7) Strongly agree,
with higher scores indicating stronger agreeance with the statement. Given that these items
reflected quite distinct measures, each item was analysed separately rather than combining

items to form a scale.
PART D: Indirect Measures of Message Effectiveness After Message Exposure

Part D comprised the same items as Part B and was presented only to participants in
the experimental condition (i.e., those who had been shown one of the four messages).
Specifically, the items measured constructs including participants’ attitudes towards slowing
down/scanning the environment after seeing the message, their intentions and willingness
to slow down/scan the environment after seeing the message. Like Part B, Part D asked
participants to respond to each item twice - once while imagining that they were driving
during the day, and again while imagining that they were driving at night. As reported in
Table 4.5, the items formed reliable scales for attitudes towards slowing down (day/night)
and scanning (day/night), and intention to slow down (day/night) and scan (day/night). As
previously noted, willingness to perform each driving behaviour and the likelihood of stopping
suddenly were measured using single items, thus it was not required to calculate reliability

scores for these measures.

Construct | Number of ltems | Slowing Down Scanning

Day Night Day Night

Attitudes 3 a=92 | a=96 | a=.95| a=.97
Intention 2 r=.751r=.89|r=.79| r = .90°
*p < .001

Table 4.5.: Reliability of attitude scales (Cronbach's &) and intention scales (Pearson’s ) post-message exposure.

PART E: Preferred Driving Strategy for the Message

This section aimed to discern the specific wording that participants preferred for the driving
strategies offered in the message. Participants were asked to rate the extent to which they
perceived the following message strategies to be useful if that saw messaging indicating
that there was a cassowary ahead or near the road on a 7-point Likert scale ranging from
(1) strongly disagree to (7) strongly agree, along with a brief explanation of why they had

provided these scores (in an open-ended response):
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Strategy 1: Slow down, look out.

Strategy 2: Look out, slow down.

Strategy 3: Reduce speed, be alert.

Strategy 4: Be alert, reduce speed.

Additionally, participants were invited to provide other suggestions to improve the mes-

sages (with responses provided via free text).

4.3.2.D. Procedure

This study was approved by the QUT Human Research Ethics Committee (QUT approval num-
ber: 7663). The survey was hosted on the online survey platform, Qualirics. Participants’
consent was obtained via a question presented following the study’s participant information
sheet. After completing Parts A and B of the survey, participants were then randomly alloc-
ated to one of five conditions, namely, to receive one of four VMS message concepts (i.e.,
experimental condition), or no message concept (i.e., control condition). If participants were
allocated to the control condition, they proceeded to the end of the survey. If allocated to
the experimental condition, participants were asked to view the presented message before
continuing onto Part C, D, and E, which assessed their responses to the message. Participation

in the survey took approximately 30 minutes.

4.3.3 Results

4.3.3.A. Sample Checks

Statistical checks were conducted to test whether there were any demographic differences
between the participants in each condition that may have potentially confounded statistical
comparisons. A chi-square test confirmed that there were no significant differences in the
gender mix between the five conditions, X2 (8,557) = 12.21, p = .142. A one-way analysis of
variance confirmed that there were no significant differences in participants’ age between the
five conditions, F(4, 550) = 0.24, p = .914. Based on these results, the groups were considered
demographically similar in their age and gender composition and thus any differences found
between groups may be more likely attributed to the messaging type (or message versus no

message condition).
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4.3.3.B. Direct Measures of Effectiveness

The direct measures of effectiveness were asked after participants had viewed one of four
message concepts. As noted previously, participants who were randomly allocated to the

control (no message) condition did not respond to these items.
Message Effectiveness

A one-way analysis of variance was performed to determine whether there were any dif-
ferences in the perceived effectiveness of the message concepts across the four experimental
message concept conditions. The results showed that there was no significant difference in
scores reported by participants, F(3, 437) = 1.91, p = .127, between message concept 1 (M =
5.79, SD = 1.15), message concept 2 (M = 6.05, SD = 1.02), message concept 3 (M = 5.84,
SD = 1.26), and message concept 4 (M = 5.84, SD = 1.18). These findings revealed that on
average, participants perceived all four message concepts to be effective (i.e., convincing
and persuasive given the scale anchors of the 7-point scale for each of the two items which

comprised the message effectiveness scale).
Third Person Effect

Table 4.6 displays the means and standard deviations of the third-person differential scores
for each of the four experimental message concept conditions. The findings show that parti-
cipants in all four message conditions considered the messages as being more influential on
themselves compared to other motorists in general (i.e., a reverse TPE). This result is encour-
aging given that any indication that a message is influencing oneself more relative to others

has been shown to be associated with greater attitudinal and intentional change (see [198]).

A one-way analysis of variance was performed to determine whether there were any
significant differences in the degree to which the participants perceived the message to be
more influential on themselves or other motorists in general across the four experimental
message conditions. The results revealed that there was no significant differences in third-
person differential scores reported by participants across the four experimental conditions,
F(3, 436) = 0.60, p = .617.

A second one-way analysis of variance was conducted to assess the perceived influence
of the message concept on self, compared to the perceived influence on other moftorists of a
similar age and gender. Table 4.7 displays the means and standard deviations of the third-
person differential scores for each of the four experimental message concept conditions. Like

the previous findings, the results showed that participants in all four experimental conditions
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Condition n | Third-person differential score
M (SD)

1. Message Concept 1 110 -1.18 (1.16)

2. Message Concept 2 | 112 -1.06 (1.19)

3. Message Concept 3 | 106 -1.06 (1.21)

4. Message Concept 4 | 111 -1.23 (1.22)

Note: Third-person scores are derived from subtracting the scores on
the perceived influence of a message on oneself item from perceived
influence of the message on others (i.e., third persons) item. Each of
these items was assessed on a 7-point scale with higher scores indicat-
ing greater influence. A negative mean third person differential score

indicates perceived greater influence on self relative fo others.

Table 4.6.: Third-person effect (TPE) of perceived influence of message concepts on self vs. other motorists in

general.

considered the message to be more influential on themselves compared to on other mo-
torists of a similar age and gender. The results of the one-way analysis of variance also
revealed that there was no significant differences in third-person differential scores reported
by participants across the four experimental conditions, F(3, 436) = 0.21, p = .315, indicating
that all four message concepts had a similar level of perceived influence on participants, with

greater perceived influence on self relative to others.
Message Rejection

A series of one-way analyses of variance were performed to determine whether there
were any differences in the perceived likelihood that participants in each of the four message
concept conditions would 1) Assume it was a general warning about animals in the areaq, 2)
Assume it was a real-time warning about an animal being on or near the road at that time,
3) Stop suddenly in your lane to try and see the animal, 4) Slow down and move off to the
side of the road to try and see the animal, and 5) Simply ignore the messaging. The results
revealed that there were no significant differences in the perceived likelihood scores reported
by participants to assume it was a general warning about animals in the area, Welch's F(3,
241.41) = 0.62, p = .601, assume it was a real-time warning about an animal being on/near
the road at that time, F(3, 437) = 0.74, p = .527, stop suddenly in your lane to try to see
the animal, Welch's F(3, 240.14) = 1.71, p = .166, slow down and move off the side of the
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Condition n Third-person score
M (SD)

1. Message Concept 1 110 -0.34 (0.86)

2. Message Concept 2 | 112 -0.33 (1.07)

3. Message Concept 3 | 107 -0.36 (1.02)

4. Message Concept 4 | 111 -0.42 (0.98)

Note: Third-person scores are derived from subtracting the
scores on the perceived influence of a message on oneself
item from perceived influence of the message on others (i.e.,
third persons) item. Each of these items was assessed on a
7-point scale with higher scores indicating greater influence.
A negative mean third person differential score indicates per-

ceived greater influence on self relative to others.

Table 4.7.: TPE of perceived influence of message concepts on self vs. other motorists of a similar age and

gender.

road to try and see the animal, F(3, 436) = 0.75, p = .525, or simply ignore the messaging,
Welch's F(3,240.52) =1.03, p = .378, across the four message concept conditions. The means
and standard deviations of the perceived likelihood of performing each behaviour scores are
reported in Table 4.8, and show that, on average, participants disagreed that they would stop
suddenly in their lane or slow down and move off to the side of the road in order to see
the animal (i.e., scored about 2 on the 7-point scale). However, the results also showed that
while, on average, participants somewhat agreed that they would assume that the signage
was a real-time warning about an animal being on/near the road, participants, on average,
were also neutral or somewhat agreed (i.e., scored 4 or 5 on the 7-point scale) that they
would assume the messaging was a general warning about animals being present in the
area. On average, participants disagreed that they would simply ignore the messaging (i.e.,
scored about 2 on the 7-point scale). These results suggest that rejection of the messages
was unlikely and, based on the mean scores, were more likely to assume it was a real-time
warning rather than a general warning and were unlikely to perform undesirable behaviours
such as stopping suddenly in attempts to see the cassowary (or animal) in response to the

messaging.

Next, a series of paired sample t-tests were conducted across each of the four experimental

conditions to determine whether there were any significant differences between the strength
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Message | Message | Message Message

Concept 1 | Concept 2 | Concept 3 | Concept 4
n | M(SD) n | M(SD)| n | M(SD)| n | M(SD)

Assume it was a general warning | 111 | 479 | 112 | 476 | 107|5.03 | 110 | 5.00
about animals in the area (1.88) (1.96) (1.87) (1.59)

Assume it was a real-time warning | 111 | 550 | 112 | 570 | 107 | 5.39 | 111 | 5.42
about an animal being on or near the (1.62) (1.60) (1.80) (1.67)

road at that time

Stop suddenly in your lane totryand | 111 | 1.98 | 112 | 1.88 | 107| 2.38 | 110 | 2.14

see the animal (1.52) (1.48) (1.92) (1.69)
Slow down and move off to the side | 111 | 270 | 112 | 2.48 | 106| 2.87 | 110 | 2.73
of the road to try and see the animal (1.93) (1.84) (2.02) (1.95)
Simply ignore the messaging 1M | 228 | 112208 |106| 234 | 110 2.00
(1.70) (1.52) (1.79) (1.53)

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement.

Table 4.8.: Perceived reactions to the message.

of participants” assumptions that the message shown was a general warning about animals
in the area compared to their assumptions that the message shown was a real-time warning
about an animal being on or near the road. The results are displayed in Table 4.9 and reveal
a significant difference in assumption scores reported by participants who viewed message
concept 1 and message concept 2. These findings indicate that participants who viewed
message concept 1 and message concept 2 held stronger assumptions that the message

shown was a real-time warning rather than a general warning.

Condition My | df t p

Message concept 1 | -0.70 | 110 | -2.75 | .007

Message concept 2 | -0.94 | 111 | -3.71 | <.001

Message concept 3 | -0.36 | 106 | -1.32 | .189

Message concept 4 | -0.41 | 109 | -1.88 | .063

Table 4.9.: Difference between assumptions that the message shown was a general warning versus a real-time

warning.
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4.3.3.C. Indirect Measure of Effectiveness

Attitudes

First, a series of four one-way analysis of variance were performed to determine whether
there were any differences in how favourably participants considered slowing down and
scanning the road environment (each during the day and during the night) after seeing mes-
saging in general (i.e., what came to participants” minds when prompted to imagine roadside
messaging and not any of the four message concepts investigated in this study) indicating that
there was an animal on or near the road to be between each of the four message conditions
and the control condition. The results showed that there was no significant difference in mean
attitude scores reported by participants between the five conditions towards slowing down
during the day, F(4, 545) = 1.42, p = .227, slowing down during the night, Welch's F(4, 271.21)
=129, p = .275, scanning the environment during the day, F(4, 545) = 0.91, p = .461, and
scanning the environment during the night, F(4, 546) = 0.86, p = .490. The overall means
and standard deviations of participant’s reported (pre-message and post-message) attitude
scores are reported in Table 4.10. These findings highlight that on average, participants in all
five conditions considered both slowing down and scanning to be relatively safe, good, and
wise (i.e., provided scores of 5 or 6 on a 7-point Likert scale) driving behaviours to engage
in after seeing general messaging alerting them to the presence of an animal in the road

environment when driving during the day and during the night.

A second series of four one-way analysis of variance was conducted to investigate whether
there were any differences in how favourably participants in the experimental condition con-
sidered slowing down and scanning the road environment (each during the day and during
the night) after viewing their randomly allocated message concept, compared to participants
in the control condition who did not view a message. The results showed that there was
no significant difference in mean attitude scores reported by participants between the five
conditions towards slowing down during the day, F(4, 547) = 1.91, p = .108, slowing down
during the night, F(4, 549) = 0.58, p = .679, scanning the environment during the day, F(4,
548) = 0.22, p = .929, and scanning the environment during the night, F(4, 550) = 0.20, p =
.937. These findings indicate that there was no significant difference between how safe, good,
and wise participants in the experimental condition after viewing one of the four message
concepts considered slowing down and scanning to be compared participants in the control
condition who did not view a message. However, it should be noted that the post-message
attitude scores reported my participants in each of the four message concept groups were
consistently higher than the pre-message score reported by participants in control group
(see Table 4.10).
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Attitude Towards Slowing Down

Day Night
Pre-Message | Post-Message | Pre-Message | Post-Message
Attitude Score | Attitude Score | Attitude Score | Attitude Score
M(SD) M(SD) M(SD) M(SD)

Message concept 1 5.97 (1.14) 6.16 (1.12) 6.05 (1.22) 6.35 (1.14)
Message concept 2 6.08 (1.15) 6.30 (1.16) 6.20 (1.25) 6.31 (1.16)
Message concept 3 5.73 (1.37) 6.18 (1.22) 5.92 (1.46) 6.27 (1.34)
Message concept 4 6.03 (1.04) 6.25 (1.04) 6.28 (1.06) 6.33 (1.04)
No message (control) 5.92 (1.19) 6.14 (1.18)

Attitude Towards Scanning the Road Environment
Day Night
Pre-Message | Post-Message | Pre-Message | Post-Message
Attitude Score | Attitude Score | Attitude Score | Attitude Score
M(SD) M(SD) M(SD) M(SD)

Message concept 1 6.19 (1.24) 6.30 (1.10) 6.14 (1.20) 6.31(1.16)
Message concept 2 6.33 (1.04) 6.41 (1.01) 6.26 (1.26) 6.34 (1.26)
Message concept 3 6.07 (1.47) 6.33 (1.28) 5.97 (1.5¢6) 6.29 (1.37)
Message concept 4 6.32 (1.04) 6.32 (1.10) 6.24 (1.12) 6.24 (1.16)
No message (control) 6.29 (1.13) 6.21(1.32)

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, more favourable attitudes towards slowing down or scanning the road environment.

Table 4.10.: Overall means and standard deviations of attitudes towards slowing down and scanning the road

environment before and after viewing message concept.

Next, a series of paired-sample t-tests were performed to determine whether there were
any differences in how favourably participants in each of the four experimental message
concept conditions considered slowing down (during the day and night) and scanning (during
the day and night) to be before viewing the message concept and after viewing the message
concept. As displayed in Table 4.11, the results show that for attitudes towards slowing down,
there was a significant difference in the mean scores reported by participants before and

after viewing message concept 1 during the day (p =.006) and night (p < .001), message
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concept 2 during the day (p = .025), message concept 3 during the day (p < .001) and
night (p < .001), and message concept 4 during the day (p = .027), whereby post-message
scores were higher than pre-message scores. Attitude scores were also higher post-message
compared to pre-message for message concept 2 and message concept 4 when driving at

night, however these differences were not statistically significant.

For attitudes towards scanning the road environment, and as presented in Table 4.11, the
results show that there was a significant difference between participants’ scores before and
after viewing the message in the message concept 3 condition during the day (p =.025) and
during the night (p =.002). No other significant differences were observed in the remaining
message concept conditions, however post-message scores were consistently higher than
pre-message scores across all groups, both during the day and night. Taken together, the
results suggest that participants who viewed message concept 3 held more favourable atti-
tudes towards both slowing down and scanning (regardless of the time of day) after viewing
the message. In addition, the results indicate a trend whereby participants in all conditions
reported significantly more favourably attitudes towards slowing down during the day after
viewing their allocated message. It is also noted that all mean scores were 6 and above on
the 7-point scale indicating that attitudes were, overall, relatively high towards engaging in
these behaviours. It is encouraging that a brief one-off exposure to the messaging was able
to increase positive attitudes in a number of instances, in a statistically significant manner

even when mean scores were already relatively high prior to viewing any of the messages.
Intentions

First, a series of four one-way analysis of variance was conducted to determine whether
there were any differences in participants’ intention to slow down and to scan the road
environment (each during the day and during the night) having seen messaging in general
(i.e., what came to participants’ minds when prompted to imagine roadside messaging and
not any of the four message concepts investigated in this study) indicating that there was
an animal nearby between each of the four message conditions and the control condition.
The overall means and standard deviations of participant’s reported intention scores (pre-
message and post-message) are reported in Table 4.12. The results showed that there was
no significant difference in mean scores reported by participants between the five conditions
regarding their intention to slow down during the day, F(4, 552) = 0.18, p = .947, slow down
during the night, F(4, 552) = 0.57, p = .686, scan the environment during the day, F(4, 552) =
0.65, p = .626, and scan the environment during the night, F(4, 551) = 0.78, p = .671. These
findings highlight that on average, participants agreed (i.e., provided scores of 5 or 6 on a

7-point Likert scale) that they intend to slow down, and agreed that they intend to scan the
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Attitude Towards Slowing Down

Day Night

Condition Mygigs | df t Mygigs | df t

Message Concept 1 | -0.24 | 108 | -2.78* | -0.29 | 109 | -3.46™*

Message Concept 2 | -0.22 | 11 | -2.27* | -0.11 | 1M -1.23

Message Concept 3 | -0.45 | 103 | -4.38™* | -0.35 | 103 | -3.77***

Message Concept 4 | -0.23 | 109 | -2.24* | -0.05| 110 | -0.47

Attitude Towards Scanning the Road Environment

Day Night

Condition Mygigs | df t Magigs | df t
Message Concept 1 | -0.12 | 108 -1.15 -0.16 | 108 | -1.72

Message Concept 2 | -0.07 | 109 | -0.84 | -0.13 | 110 -1.28

Message Concept 3 | -0.25 | 104 | -2.27* | -0.31 | 104 | -3.14*

Message Concept 4 | -0.02 | 108 | -0.17 -0.10 | 1O | -0.04

*p < .05, *p < .01, **p < .001

Note: Mean difference scores based on cases being excluded pairwise.
Negative mean difference scores indicate that the pre-message score

was lower than the post-message score.

Table 4.11.: Difference in attitudes towards slowing down and scanning the road environment before and after

viewing message concepfs.

environment prior to seeing any messaging.

A second series of four one-way analysis of variance was conducted to investigate whether
there were any differences in participants’ intention to slow down and scan the road envir-
onment (each during the day and during the night) between the experimental condition after
viewing their randomly allocated message concept and the control condition who did not
view a message. The results showed that there was no significant difference in mean in-
tentions scores reported by participants between the five conditions towards slowing down
during the day, Welch's F(4, 275.05) = 1.14, p = .340, slowing down during the night, Welch's
F(4, 274.86) = 1.88, p = .115, scanning the environment during the day, Welch's F(4, 272.80)
= 111, p = .351, and scanning the environment during the night, Welch's F(4, 273.56) = 1.35,
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p = .250. These findings indicate that there was no significant difference in the degree to
which participants in the experimental intended to slow down and scan for the environment

(during the day and night) after viewing one of the four message concepts, compared to the

control condition who did not view a message.

Intention to Slow Down

Day Night
Condition Pre-Message | Post-Message | Pre-Message | Post-Message
Intention Intention Intention Intention

Score Score Score Score

M(SD) M(SD) M(SD) M(SD)
Message concept 1 6.01(1.20) 6.15 (1.03) 6.18 (1.06) 6.32 (0.92)
Message concept 2 5.94 (1.33) 6.14 (1.23) 6.19 (1.20) 6.05 (1.44)
Message concept 3 5.90 (1.48) 6.16 (1.20) 6.20 (1.25) 6.40 (0.99)
Message concept 4 5.89 (1.28) 6.20 (0.97) 6.31(1.03) 6.30 (0.98)
No message (control) | 5.88 (1.36) 6.07 (1.28) -

Intention to Scan the Road Environment
Day Night
Condition Pre-Message | Post-Message | Pre-Message | Post-Message
Intention Intention Intention Intention

Score Score Score Score

M(SD) M(SD) M(SD) M(SD)
Message concept 1 6.43 (0.95) 6.36 (0.94) 6.33 (1.00) 6.34 (1.02)
Message concept 2 6.40 (1.14) 6.29 (1.24) 6.36 (1.21) 6.23 (1.38)
Message concept 3 6.29 (1.24) 6.37 (1.05) 6.21 (1.31) 6.50 (1.04)
Message concept 4 6.29 (1.16) 6.23 (1.06) 6.30 (1.20) 6.24 (1.24)
No message (control) | 6.47 (0.77) 6.48 (0.93) -

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, stronger intentions of slowing down or scanning the road environment.

Table 4.12.: Overall means and standard deviations of intention to slow down and scan the road environment

before and after viewing message concepts.
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Next, a series of paired-sample t-tests were conducted to determine whether there were
any differences in participants’ reported intention to slow down (during the day and night)
and scan the road environment (during the day and night) in each of the four experimental
message concept conditions before and after viewing the message concept. The results, as
displayed in Table 4.13, show a significant difference between intention to slow down scores
for participants who viewed message concept 3 during the day (p =.015) and night (p < .013)
and message concept 4 during the (p =.011), whereby post-message scores were higher than
pre-message scores. Although not statistically significant, it should be noted that intention
scores decreased or remained stable after viewing the message for message concept 2 (night

only) and message concept 4 (night only).

For intentions to scan the road environment, and as displayed in Table 4.13, the results
show that there was a significant difference between scores for participants who viewed
message condition 3 when driving at night, who reported higher post-message scores com-
pared to their pre-message scores (p =.008). No other significant differences were observed
in the remaining message concept conditions. However, similar to the findings regarding
intentions to slow down, participants intent to scan was also found to decrease (although not
to a statistically significant extent) after viewing the message for message concept 1 (day),
message concept 2 (day and night), and message concept 4 (day and night). Overall, the
findings suggest message concept 3 had the strongest impact on participants intentions to
slow down (during the day and night) and scan the environment (during the night). In addi-
tion, the findings also indicate a trend whereby intentions to scan the environment tended to
decrease after viewing the message more often (i.e., for message concepts 1, 2, and 4 dur-
ing the day, and message concepts 2 and 4 during the night) than intentions to slow down,
which only decreased (message concept 2) or remained constant (message concept 4) when
driving at night. However, it should be noted that mean scores remained high post-message
across all groups for each driving behaviour (i.e., mean scores were 6 and above on the 7-
point scale), indicating that participants still held relatively high intentions to engage in these

positive behaviours regardless of the observed decreases in scores.
Willingness

First, a series of four one-way analysis of variance was performed to determine if there
were any differences in participants’ reported willingness to slow down and to scan the
environment (during the day and during the night) having seen messaging in general (i.e.,
what came to participants’ minds when prompted to imagine roadside messaging and not
any of the four message concepts investigated in this study) indicating that there was an

animal on or near the road between each of the four experimental message conditions
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Intention to Slow Down

Day Night
My | df t My | df t

Message Concept1 | -0.14 | 110 | -1.36 | -0.14 | 110 | -1.44

Message Concept 2 | -0.20 | 111 | -1.48 | 013 | M 1.21

Message Concept 3 | -0.26 | 106 | -2.48* | -0.21 | 106 | -2.24*

Message Concept 4 | -0.32 | 110 | -2.57* | 0.00 | 110 | 0.05

Intention to Scan the Road Environment

Day Night

My | df t Mg | df t

Message Concept1 | 0.06 | 110 | 0.92 | -0.01 | 110 | -0

Message Concept 2 | O0.11 | 111 | 0.82 | 0.13 | NI | 1.44

Message Concept 3 | -0.08 | 106 | -0.71 | -0.24 | 105 | -2.71**

Intention to Scan the Road Environment

Day Night

Condition My | df t Mygigs | df t

Message Concept 4 | 0.06 | 110 | 058 | 0.05 | 110 | 0.71
*p < .05, *p < .01, **p < .001

Table 4.13.: Difference in intention to slow down and scan the road environment before and after viewing

message concepts.

and control condition. The results showed that there was no significant difference in mean
scores between the four message concept conditions regarding participants” willingness to
slow down during the day, F(4, 549) = 0.88, p = .478, scan the environment during the day,
F(4, 550) = 0.79, p = .529, or scan the environment during the night, F(4, 549) = 0.92, p
= .454. However, the results also revealed a significant main effect in the scores regarding
participants’ willingness to slow down during the night, Welch's F(4, 270.10) = 3.34, p = .011.
Post-hoc comparisons showed that there was a significant difference between scores in the
message concept 3 condition and the message concept 4 condition (Mdiff = -0.40, p =.024),
indicating that participants in message condition 3 reporter greater willingness to slow down

during the night after seeing general messaging alerting them to the presence of nearby

Section 4.3: Study 2

121



animals compared to participants in message condition 4. No significant differences were

observed between any other condition pairs.

A second series of four one-way analysis of variance was conducted to investigate whether
there were any differences in participants’ willingness to slow down and scan the road en-
vironment (each during the day and during the night) between the experimental condition
after viewing their randomly allocated message concept and the control condition who did
not view a message. The results showed that there was no significant difference in mean
willingness scores reported by participants between the five conditions towards slowing down
during the day, F(4, 551) = 1.36, p = .256, slowing down during the night, F(4, 550) = 1.25, p
= .288, scanning the environment during the day, F(4, 551) = 0.40, p = .808, and scanning
the environment during the night, F(4, 549) = 0.47, p = .755. These findings indicate that
there was no significant difference in the degree to which participants reported they would
be willing to slow down and scan for the environment (during the day and night) after viewing
one of the four message concepts, compared to the control condition who did not view a
message. However, it should be noted that the post-message willingness to slow down scores
reported my participants were consistently higher than the pre-message score reported by
participants in control group, and most post-message willingness to scan scores were higher
than those reported by participant in the control group. The overall means and standard
deviations of participant’s reported pre-message and post-message willingness scores are
reported in Table 4.14.

Next, a series of paired-sample t-tests were performed to determine whether there were
any differences in participants’ reported willingness to slow down (during the day and night)
and scan the road environment (during the day and night) in each of the four experimental
message concept conditions before and after viewing the message concept. The results
showed that there was a significant difference in the mean willingness to slow down during
the night and scan the environment during the night reported by participants who viewed
message concept 3 (p =.003), whereby post-message scores were higher than pre-message
scores. However, like the results for intentions, participants who viewed message concept 2
and message concept 4 reported lower post-message scores for willingness to slow down
during the day (message concept 2 only) and night (message concept 2 and 4). Although

these differences did not reach statistical significance.

For willingness to scan the road environment, and as presented in Table 4.15, the results
showed that participants who viewed message concept 3 reported significantly higher post-
message scores compared to pre-message scores when driving at night (p = .024). However,

the results showed that post-message willingness to scan scores were lower than pre-message
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Willingness to Slow Down

Day Night
Pre-Message | Post-Message | Pre-Message | Post-Message
Willingness Willingness Willingness Willingness
Score Score Score Score
M(SD) M(SD) M(SD) M(SD)
Message concept 1 6.25(1.08) 6.36 (0.95) 6.38 (0.95) 6.41 (0.85)
Message concept 2 6.34 (0.91) 6.24 (1.13) 6.40 (1.03) 6.29 (1.1)
Message concept 3 6.20 (1.26) 6.30 (1.13) 6.20 (1.19) 6.46 (1.05)
Message concept 4 6.28 (0.99) 6.37 (0.91) 6.59 (0.67) 6.52 (0.86)
No message (control) | 6.09 (1.20) 6.27 (1.18) -

Willingness to Scan the Road Environment

Day Night
Pre-Message | Post-Message | Pre-Message | Post-Message
Willingness Willingness Willingness Willingness
Score Score Score Score
M(SD) M(SD) M(SD) M(SD)
Message concept 1 6.60 (0.80) 6.52 (0.75) 6.49 (0.88) 6.47 (0.86)
Message concept 2 6.61 (0.90) 6.40 (1.14) 6.50 (1.05) 6.32 (1.22)
Message concept 3 6.67 (1.06) 6.53 (0.96) 6.58 (1.23) 6.47 (1.08)
Message concept 4 6.50 (0.86) 6.44 (0.97) 6.58 (0.99) 6.50 (0.99)
No message (control) | 6.44 (0.83) 6.43 (1.15) -

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, greater willingness to slow down or scan the road environment.

Table 4.14.: Overall means and standard deviations of willingness to slow down and scan the road environment

before and after viewing message concepts.

scores for participants who viewed message concept 1, message concept 2, and message
concept 4 (day and night), and message concept 3 (day only). Of these results, the difference
between scores was only significant for message concept 2 when driving during the day (p

=.027). Overall, the findings suggest that participants who view message concept 3 reported
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significantly greater willingness to both slow down and scan the road environment but only at
night. In addition, the findings also indicate a similar trend as observed for intentions, whereby
participants reported lower willingness to scan scores after viewing the message across all
groups when driving both during the day and night (except for message concept 3 at night as
previously noted). Moreover, and like the results reported for intentions, only participants who
viewed message concept 2 and message concept 4 reported lower willingness to slow down
after seeing the message. Again, although some willingness scores were seen to decrease
after viewing the message, the post-message scores remained high (i.e., mean scores were
6 and above on the 7-point scale). This finding suggests that participants were willing to
both slow down and scan the road environment (during the day and night) regardless of the

observed decreases in scores.

Willingness to Slow Down

Day Night

My | df t Mg | df t

Message Concept 1 | -0.11 | 109 | -1.17 | -0.12 | 108 | -0.26

Message Concept 2 | 0.21 | 110 | 1.01 0m | m 1.01

Message Concept 3 | -0.10 | 106 | -1.24 | -0.27 | 105 | -3.09**

Message Concept 4 | -0.09 | 110 | -1.04 | 0.07 | 110 | 0.92

Willingness to Scan the Road Environment

Day Night

Mg | df t Mygigs | df t
Message Concept1 | 0.08 | 109 | 126 | 0.12 | 109 | 0.33

Message Concept 2 | 0.21 | 11 | 2.24*| 0.13 | M 1.42

Message Concept 3 | 0.07 | 106 | -1.02 | -0.16 | 105 | -2.30*

Message Concept 4 | 0.06 | 110 | 0.91 | 0.07 | 110 1.27

*p < .05, ¥p < .01, **p < .001

Note: Mean difference scores based on cases being excluded pairwise.
Negative mean difference scores indicate that the pre-message score

was lower than the post-message score.

Table 4.15.: Difference in willingness to slow down and scan the road environment before and after viewing

message concepts.
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Likelihood of Stopping Suddenly

First, two one-way analysis of variance were performed to determine if there were any
differences in participants’ reported likelihood that they would stop suddenly in their lane in
an attempt to see the animal after seeing messaging (in general) indicating that there was an
animal nearby (when driving during the day and during the night) between each of the four
experimental message conditions and the control condition. The results of the first one-way
analysis of variance showed that there no significant difference in mean scores between the
five conditions regarding participants’ likelihood of stopping suddenly during the day, F(4,
552) = 1.04, p = .366. The results of the second one-way analysis of variance showed that
there was a significant main effect in the scores regarding participants’ likelihood of stopping
suddenly during the night, Welch's F(4, 275.06) = 2.61, p = .036. Post-hoc comparisons
revealed that there was no significant difference in mean scores between any of the condition
pairs; however, mean difference scores did approach statistical significance for the message
concept 2 and message concept 3 condition comparison (Mdiff = -0.83, p = .054) and
the message concept 2 and message concept 4 condition comparison (Mdiff = -0.78, p
= .056). These results suggest that participants who viewed message concept 2 may be
less likely to stop suddenly compared to participants who viewed message concept 3 and
message concept 4, albeit not significantly so. Overall, the findings suggest that, on average,
participants were unlikely to stop suddenly to try to see the animal after seeing messaging
alerting them to the presence of a nearby animal, both when driving during the day and

during the night.

An additional two one-way analysis of variance were conducted to investigate whether
there were any differences in the reported likelihood that they would stop suddenly in their
lane to attempt to see the animal Between participants in the experimental condition after
viewing their randomly allocated message concept and the control condition who did not
view a message. The results of the first one-way analysis of variance showed that there as a
significant main effect regarding participants’ likelihood of stopping suddenly during the day,
Welch's F(4, 273.81) = 2.71, p = .031. However, post-hoc comparisons revealed that there was
no significant difference in mean scores between any of the condition pairs. The results of
the second one-way analysis of variance showed that there was also a significant main effect
in the scores regarding participants’ likelihood of stopping suddenly during the night, Welch's
F(4, 274.57) = 4.63, p = .001. Post-hoc comparisons revealed that there was a significant
difference between message concept 2 condition and message concept 3 condition (Mdiff =
-0.99, p = .005), and message concept 2 condition and the control condition (Mdiff = -0.95,
p = .003). These findings indicate that participants who viewed message concept 2 may

be less likely to stop suddenly to try and seen the animal when driving at night compared
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to participants who viewed message concept 3 or participants who were not exposed to
a specific message concept. The overall means and standard deviations of participant’s

reported pre-message and post-message likelihood of stopping suddenly scores are reported

in Table 4.16.

Likelihood of Stopping Suddenly

Day Night
Pre-Message | Post-Message | Pre-Message | Post-Message
Stop Suddenly | Stop Suddenly | Stop Suddenly | Stop Suddenly
Score Score Score Score
M(SD) M(SD) M(SD) M(SD)
Message concept 1 2.81(2.02) 2.47 (2.11) 2.96 (2.20) 2.56 (2.19)
Message concept 2 2.54 (1.85) 2.18 (1.56) 2.55 (2.02) 2.05 (1.75)
Message concept 3 3.07 (2.22) 2.89 (2.25) 3.38 (2.46) 3.05(2.40)
Message concept 4 2.96 (2.06) 2.68 (2.11) 3.33 (2.27) 2.62 (2.06)
No message (control) 2.78 (2.05) 3.00 (2.15)

Note: items were measured on 7-point Likert scales with higher scores indicating greater likelihood to

stop suddenly and, thus, more positive results from a safety perspective are for lower mean scores.

Table 4.16.: Overall means and standard deviations of likelihood of stopping suddenly to see the animal before

and after viewing message concepts.

Next, a series of paired-sample t-tests were performed to determine whether there were
any differences in participants’ reported likelihood of stopping suddenly (during the day
and night) in each of the four experimental message concept conditions before and after
viewing the message concept. As presented in Table 4.17, the results showed that there was
a significant difference in the mean likelihood of stopping suddenly (during the day) scores
reported by participants who viewed message concept 1 (p = .034) and message concept 2
(p = .009). The results also showed that there was a significant difference in mean likelihood
of stopping suddenly (during the night reported by participants who viewed message concept
1(p =.009), message concept 2 (p = .003), and message concept 4 (p < .001). No significant
differences were observed for message concept 3 (either during the day nor night). Overall,
the findings suggested that participants who were presented with message concept 1 or
message concept 2 reported that they would be less likely to stop suddenly to try and see
the animal after viewing the message (both when driving during the day and during the

night) than prior to viewing each of these respective messages, and participants who were
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presented with message concept 4 reported being less likely to stop suddenly after viewing
the message when driving at night only relative to before seeing the message. Participants
who viewed message concept 3 reported no change in the likelihood that they would stop
suddenly after viewing the VMS message, regardless of the time of day. Thus, overall, mean
scores were, on average, low, suggesting that participants were unlikely to engage in this
behaviour; however, encouragingly, in the case of messages 1, 2 and 4, participants were

significantly less likely to report intention to stop after seeing these messages than prior to.

Likelihood of Stopping Suddenly

Day Night
My | df t Magigs | df t
Message Concept 1 | 0.34 | 110 | 2.15* | 0.40 | 110 | 2.67**

Message Concept 2 | 0.37 | 11 | 2.89** | 0.50 | 1M1 | 3.02**

Message Concept 3 | 0.18 | 106 | 0.98 | 0.34 | 106 | 1.92

Message Concept 4 | 0.28 | 110 | 1.63 0.71 | 110 | 4.07***

*p < .05, ¥p < .01, **p < .001

Note: Mean difference scores based on cases being excluded pairwise.
Negative mean difference scores indicate that the pre-message score

was lower than the post-message score.

Table 4.17.: Difference in likelihood of stopping suddenly to see the animal before and after viewing message
concepfs.

4.3.3.D. Driving Strategies for the Message

Participants allocated to one of the message concept conditions were asked to rate the extent
to which they agreed that the message had provided the following four driving strategies
- 1) Slow down, look out, 2) Look out, slow down, 3) Reduce speed, be alert, and 4) Be
alert, reduce speed, would be useful if they were to see a message about a cassowary
having been detected ahead or near the road. Participants provided their responses on a
7-point Likert scale from 1 (strongly disagree) to 7 (strongly agree). The means and standard
deviations of the perceived usefulness of each driving strategy are reported in Table 4.18,
and indicate that, on average, participants agreed that all four strategies would be useful to
have seen in a message about a cassowary being on or near the road. However, perceived

usefulness scores were slightly higher for ‘slow down, look out’ and ‘reduce speed, be alert’,

Section 4.3: Study 2

127



suggesting that participants preferred strategies which encouraged drivers to first reduce their
driving speed before scanning the road environment. A one-way analysis of variance was
then performed to determine whether there were any significant differences in participants’
perceived usefulness of each driving strategy between each of the four message concept
conditions. The results showed that there was no significant difference in perceived usefulness
scores for ‘slow down, look out’ F(3, 437) = 0.80, p = .497, ‘look out, slow down’, F(3, 436)
= 154, p = .203, ‘reduce speed, be alert’, F(3, 437) = 1.30, p = .275, and ‘be alert, reduce
speed’, Welch's F(3, 241.33) = 1.48, p = .220 across the four message concept conditions.

Driving Strategy Experimental | Message | Message | Message | Message
Condition Concept 1 | Concept 2 | Concept 3 | Concept 4

M (SD) M (SD) M (SD) M (SD) M (SD)
Slow down, look out 6.06 (1.31) 6.13 (1.18) | 6.02(1.38) | 6.18 (1.20) | 5.93 (1.45)
Look out, slow down 5.69 (1.45) 5.45 (1.55) | 5.68 (1.47) | 5.83 (1.34) | 5.79 (1.43)
Reduce speed, be alert | 6.09 (1.20) 6.04 (1.31) | 5.98 (1.27) | 6.07 (1.20) | 6.28 (1.01)
Be alert, reduce speed 5.76 (1.45) 551 (1.61) | 5.89 (1.34) | 575 (1.46) | 5.87 (1.37)

Note: items were measured on 7-point Likert scales with higher scores indicating greater agreement

and, thus, more favourable views of a strafegy.

Table 4.18.: Perceived usefulness of driving strategies.

Reasoning for Preferred Driving Strategies

Participants were also asked to briefly explain why they provided the scores that they did
for the four driving strategies. A total of 433 participants responded to this question. Nearly
half of participants in the experimental condition (n = 197, 44.7%) provided responses that
indicated that they held no preference for a particular strategy, reported that they agreed
(n = 60, 13.6%) or strongly agreed (n = 137, 31.1%) that all four driving strategies would
be useful having seen messaging about the presence of an animal near or on the road.
The most cited reasons participants reported for having no preference for specific strategies
was that they would change their behaviour accordingly regardless of the wording out of 1)
concern for the welfare of the animal, their vehicle and its occupants, and other road users, 2)
a desire to be compliant with road safety messaging, and 3) because it is “common sense”.
Only a small number of participants reported disagreeing (n = 1) or strongly disagreeing (n =
2) that the four driving strategies were useful, citing that the strategies were “vague” and that
there was a risk that “people could slow down to dangerous speeds” which could potentially

create additional road hazards.
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“l think any warning on a regional road to slow down and scan the environment is sensible

and should be taken seriously.” (Female, 45)

“If there is a warning, you should do all those things - be alert, look out, slow down, reduce
speed.” (Male, 66)

“l would be extremely worried about hitting a cassowary due fo its size, so if warning had
been giving about one, regardless of the wording of the sign, | would be slowing down

anyway.” (Female, 32)

“l am a cautious driver, | always drive carefully and will slow down if requested.” (Female,

54 years)

Of the participants who expressed a preference regarding the four driving strategies, a total
of 68 (15.7%) reported that they would consider the strategy more useful if the driving slower
aspect was presented first. The most cited reasons for this preference were that slowing down
is the most “important” and “immediate” of the two actions for driving safely in the specific
situation, it is safe to scan the environment when driving slower, and that drivers should
already be maintaining alertness while driving “regardless of warnings”. A smaller number
of participants (n = 11, 2.5%) reported a preference for presenting the environment scanning
aspect first, citing that “people don’t want to necessarily slow down” and as “animal may or

may not be there, [it is] best to look and see first before reacting”.

“l Put the most important action first. If | see a sign for only a few seconds, | shouldn't have
fo think about what you want me to do. The easiest action with the best outcome is fo
reduce speed. In case of any impact, it is more survivable for me, the animal, and the car.

look out could have [drivers] looking for the animal and not the road.” (Female, 40)

“I think the speed first is more important risk mitigation factor and makes sense to me as a
driver.” (Male, 29)

“Looking out without slowing down can be very dangerous, as would being alert but not
slowing down would reduce the time to react if the animal was to jump on the road.” (Male,
60)

“The action you would like everyone to take comes first: reduce speed, be alert are the two

specific things you want drivers to do and in that order.” (Female, 5I)
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When considering the four driving strategies as two sets (i.e., ‘slow down, look out’" and
‘look out, slow down’ as one set, and ‘reduce speed, be alert’ and ‘be alert, reduce speed’ as
the second set), a similar number of participants reported a preference for each. Based on
the explanations offered for the scores provided in the previous items, 32 participants (7.4%)
reported a preference for the ‘slow down, look out’ set, and 35 participants (8.0%) reported
a preference for the ‘reduce speed, be alert’ set. Participants who preferred the ‘slow down,
look out” set reported that these terms were “simpler”, had a “stronger impact” and were
“easier to understand”, and considered the ‘reduce speed, be alert’ set to be too “generic”.
Participants who preferred the ‘reduce speed, be alert’ set reported that these terms were
more “compelling”, “persuasive” and would “make more of an impact on the driver”, and
expressed concerns that the ‘slow down, look out’” may be too “alarming” for drivers. How-
ever, participants (across both preferences) also often reported that their preferred set was
“clearer” and better indicated the presence of “an immediate threat” compared to their least
preferred set and suggest that preferences regarding specific wording of the message may
be due to individual differences rather than reflecting what would be considered a more

effective strategy for drivers more broadly.
Participant Suggestions to Improve Driving Strategies

In addition to providing an explanation for the scores they gave to each of the four driving
strategies, participants were also invited to suggest ways the strategies could be improved.
A total of 204 participants responded to this question. Five themes were identified from
participants’ suggestions - (1) alternative wording for the presented strategies, (2) including a
reference (text or image) to the specific animal, (3) the need to ensure drivers are aware of
the real-time nature of the message, and (4) suggestions relating to design and placement
of the signage. These five themes are discussed below.

Alternative Wording of Strategies

A total of 44 participants offered new driving strategies for the message or suggested ways
to improve the provided strategies. Common suggestions included amending the supplied
message taglines to include using the ‘slow down’ strategy only (n = 16), the ‘scan the en-
vironment” strategy only (n = 8), and including words that denote urgency such as warning,
caution, or danger (n = 6). In addition to these specific suggestions, a further é participants
emphasised that the messages need to be “spelt out clearly using simple and few words”.
The full list of the driving strategy suggestions offered by participants is presented in Table
419.

In addition to these alternative wordings to the presented strategies, a further 15 participants
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Driving Strategy Suggestions

e Prepare to stop

e Animals roaming, reduce speed

e Be dlert, stay responsible

e Big bird ahead, slow down

e Slow down, look out, be safe

e Drive to the conditions

e ANIMALS MAY BE PRESENT AHEAD SO
SLOW DOWN

e Slow down, animals about

e Slow down, stay alert

e Slow down, look out, save lives

e Be wary of cassowary

e Be careful

e Danger. Possible animal on or near
road. Reduce speed NOW

e SLOW DOWN AND BE CAUTIOUS

e To prevent a potential damaging/serious
collision with wildlife, please slow down
and stay alert

e Only scan area if safe to do so

o Slow down/reduce speed, wildlife ahead
e SLOW DOWN?

e Be safe

e Slow down, large wildlife ahead

e BEWARE OF WILDLIFE ON ROAD

e Be alert

e WATCH OUT, PREPARE TO REDUCE
SPEED, CAUTION WILDLIFE

e Cassowary spotted. Slow down.

e Slow down. Use caution. Wildlife haz-
ard.

e Animals in area, be alert

e Be alert, animals!

e Animal seen in last 24 hours, be alert
e Watch out — animals on the road ahead
e ANIMAL AHEAD, SLOW DOWN

e ANIMAL AHEAD, BE ALERT

e Drive in the speed limit

e Include ‘detected ahead’

¢ Include the word ‘habitat’

e Words like warning, caution?, or danger

Table 4.19.: Driving strategy suggestions offered by participants.

suggested the driving strategies could be improved by including more detailed instructions
for drivers. Specifically, six participants suggested that it would be useful to include a specific
speed limit in the message for drivers to adhere to, and nine participants suggested that it
would be useful to include the number of kilometres that the detection zone (i.e., the area in

which the driver can expect to potentially encounter the animal) extends for.
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“Potentially changing the speed limits for the areas and have it written on the signs.
Humans seem to cope better with clear instructions and when there’s limits such as

numbers to follow it may make people slow down more effectively.” (Female, 31)

“Animal on the road within the next [x] km’. Be hand to know the know distance [the]

animal was sighted on [the] road so as to resume normal speed.” (Male, 58)

Reference to the Specific Animal

A total of 35 participants offered suggestions relating to whether they considered it im-
portant to reference the specific animal that has been detected within the message. Of this
subsample, 28 participants reported that including name of the animal (n = 13) or an image
of the animal (n = 15) in the message would be beneficial to help drivers understand what
to expect. Conversely, seven participants suggested that the type of animal should not be
identified, primarily due to concerns that drivers may become distracted while trying to spot
an animal they are interested to see. In addition, a small number of participants also noted
that the size of the animal is more important than the type of animal, and that the word

‘cassowary’ was difficult to read quickly.

“An image [of] the animal or clear messaging ‘large animal on road ahead’ or “large
animal near the road ahead’, if you just say ‘animal’ that could mean a lizard which would

not necessarily make me choose to slow down.” (Female, 42)

“I personally like the identification of the exact animal in the area. | think it provides more
authentication of the message and would influence me and hopefully other drivers to the

urgency and validity of the signing.” (Female, 73)

“I don't think identifying the type of animal is useful, and I'm concerned that some people

might stop unnecessarily.” (Male, 67)

Emphasising Real-Time Nature of Message

A total of 24 participants offered suggestions that revolved around emphasising the need
for drivers to understand that the messages were real-time alerts about the presence of an-
imal that poses a potential road hazard, rather than a general warning that animals inhabit
the area. To help drivers understand the immediacy of the message, common suggestions

offered by participants included using “direct” wording (e.g., “cassowary detected”) to “con-
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vey a sense of emergency” (n = 3) and display additional real-time data on the signage such
as the time frame the animal was detected within (n = 7), the chance (%) of encountering
the animal (n = 1), rating the level of danger ahead (n = 1), the current date (n = 1), and
the approximate distance the animal is from the road (n = 3). Additionally, a further eight
participants specifically expressed concerns that drivers may ignore the messaging if they
assume that the signage is a permanent fixture offering a general warning about animals
in the animal or become complacent if they do not encounter any animals after seeing the

message “like ‘roadwork ahead’ [signs] and there’s no roadwork”.

“Any messaging about animals on the road needs to be real time and not just a general
warming message and in order to do this you also need to influence drivers and tell them

that you now have real-time messaging.” (Male, 44)

“Needs to be legit; if they are put in the sign the animals need fo be around. If you put
them in places where there [are] minimal animals eventually people will ignore the signs

and speed through the area, and not care or believe the signs.” (Female, 46)

Signage Design and Placement

A total of 47 participants offered suggestions that related to the visual design of the signage
and factors related to the placement of the signage. The most common suggestions offered
were fo include flashing lights (n = 23) to attract attention, use bright colours (e.g., red to
indicate that the message is a warning) (n = 6), and ensure drivers are able to read and enact
the strategies offered in the message (i.e., slowing down and scanning the road environment)
by placing the signs at an appropriate distance from the detection zone (n = 2) or placing

multiple signs along the detection zone (n = 2).
“Flashing lights or signs are more likely to be noticed.” (Female, 72)
“Colourful flashing lights will do the trick.” (Female, 26)

“Give enough notice to avoid sudden stops or surprises” (Male, 39)
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4.3.4 Summary on Study 2

Study 2 represented the final study in a mixed program of research that involved the devise
and evaluation of messaging seeking to inform passing motorists that an animal had been
detected on or near the road ahead and to encourage them to engage in two key desired
behaviours - (1) slow down, and (2) scan the road environment. Study 2 sought to evaluate
the relative effectiveness of four message concepts and when compared with a control group
of participants who were not shown any messaging. The main findings emerging from Study

2 are as follows:

« Participants reported average scores of 5 and é (on a 7-point scale) for attitudes, in-
tentions, and willingness to slow down and scan the road environment, and average
scores of 2 and 3 (on a 7-point scale) regarding the likelihood of that they would stop
suddenly in an effort to see the animal, both before and after viewing the message.
These findings suggest that the current sample of participants inherently appreciate
the importance of messaging designed to warn motorists of the presence of nearby

animals.

+ Overall, the sample was large and the distribution of participants within each of the five
conditions was relatively even. However, it is acknowledged that the sample comprised
a high proportion of older participants. Given that the results of Study 2 reflected similar
findings to those found in Study 1 (where age was not seen to influence the results),
the older age of the cohort in the present study was not considered to be the factor

underpinning participants’ responses.

+ The findings from the direct measures of effectiveness and the indirect measures of
effectiveness indicated that participants in the current sample would respond as inten-
ded to any of the four message concepts presented in Study 2. This is evidenced by

the following:

- Regarding the direct measures of effectiveness of the message concepts, the over-
all results revealed that there were no substantial differences between the con-
cepts. The mean scores showed that participants perceived the four message
concepts to be effective (i.e., convincing and persuasive). The mean scores of the
message rejection items also showed that participants disagreed that they would
stop suddenly in their lane to try and see the animal, slow down and move off to
the side of the road to try and see the animal, or simply ignore the messaging

if they saw the message while driving. These findings indicate that participants
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reported more acceptance rather than rejection of the four message concepts.

- In terms of perceived influence of the message on self versus others, the results
showed that were was no significant difference between the message concepts.
The third-person differential scores showed that participants perceived that the
message would have greater influence on themselves compared to other motor-

ists (consistently found reverse TPEs).

- Regarding the indirect measures of effectiveness, and as previously mentioned,
participants in all message concept groups consistently reported relatively high
scores for attitudes, intentions, and willingness to slow down and scan as de-
sired before and after viewing the message. Despite reporting high pre-message
scores, improvements in attitudes were still observed for all four message con-
cepts and were significantly higher at post than pre for message concept 3 (both
behaviours, day and night). Similarly, participants in all message concept groups
reported consistently lower scores (as intended) regarding the likelihood that they
would stop suddenly in their lane in an attempt to the see the animal after view-
ing their allocated message. These findings indicate that participants held more
favourable attitudes towards these two positive driving behaviours and indicated

less intention to stop suddenly following a single, brief exposure to the message.

+ Although participants from some groups reported lower post-message scores on in-
tentions and willingness to perform each driving behaviour at certain times of the day,
it is important to recognise that the post-message scores across all groups remained
high for both measure (i.e., 6 or above on a 7-point scale), and only one of these
decreases was statistically significant. It is unclear what prompted these decreases in
scores; however, the finding indicates that participants reporting that they were still
willing to and intended to slow down and scan the environment after viewing their
allocated message. However, although the overall results support the effectiveness of
all four message concepts, the subtleties afforded by the SatMDT framework [1] show
that each message differed in strength across the direct and indirect measures. The

intricacies are discussed in the following points:

- Regarding the direct measures of effectiveness, all four message concepts were
seen to be equally effective and participants from all four groups perceived their
allocated message would be more influential on themselves as opposed to other
motorists (as desired). However, when comparing whether participants considered

the message to be a real-time warning or a general warning about animals in the
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areq, those who viewed message concept 1 and message concept 2 reported sig-
nificantly higher real-time warning scores compared to general warning scores.
It is noted that these two concepts also feature the same text (i.e., ‘cassowary
detected’ and ‘slow down, look out’). This finding indicates that participants who
viewed message concepts 1 and 2 held stronger assumptions that the message
was a real-time warning, which may be due to the language used in these mes-
sages. This finding is important given the intent of the system displaying these

messages to be one indeed offering real-time warnings to motorists.

In terms of attitudes, post-message scores were higher (as intended) for all mes-
sage concepts for slowing down and scanning, both during the day and night.
Message concept 3 was the only message that received significantly higher post-
message scores for both behaviours when driving during the day and night. How-
ever, significant differences were also observed for message concept 1 (slowing
down, day and night), and message concepts 2 and 4 (slowing down, day only).
These findings suggest that message concepts 1, 2, and 4 may elicit different
(though still positive) attitudinal responses depending on the driving behaviour
and time of day, and message concept 3 may offer relatively consistent increases

in attitude regardless of the behaviour or time of day.

Regarding participants likelihood of stopping suddenly to see the animal, post-
message scores were lower (as intended) for all four message groups. However,
significant decreases in scores were observed for message concepts 1 and 2 (day
and night), and message concept 4 (night only). This finding suggests that, like
the results related to real-time versus general warning, participants who viewed
message concept 1 and message concept 2 indicated less intent to stop suddenly
which may be due to the language used in these messages. It also noticed that
message concept 4, like 1 and 2, also specifies the type of animal that has been
detected. This suggests that participants may be less inclined to stop suddenly
because they are aware that the animal ahead is a cassowary and perhaps being
more aware of what the animal is, are more prepared and less likely to engage

in a risky behaviour such as stop suddenly in their lane.

The findings related to intentions and willingness were mixed across both driving
behaviours and time of day. Trends in the results reflected stronger intentions
and willingness to slow down after viewing the message for all messages except
message concepts 2 and 4, particularly at night. A contrasting trend was seen

for scanning, whereby trends reflected stronger intentions and willingness to scan
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before viewing the message for all messages except message concepts 1 and 3,
which showed some increased scores across the two measures. Participants who
viewed message concept 3 were the only group that consistently reported higher
post-message intention and willingness scores for both driving behaviours except

for willingness to scan during the day.

- Notably, message concept 3 was the only concept that did not state that the
animal detected was a cassowary (i.e., the message read ‘Animal Ahead’) and was
also the only message that received significantly higher post-message scores for
attitudes, intentions, and willingness to perform both driving behaviours at night.
These findings suggest participants who viewed message 3, as the only message
of the four messages tested, that did not identify the animal may be more inclined
to engage in these safe driving behaviours because they are unsure what animal

to expect, particularly when driving at night when visibility might be compromised.

+ In terms of preferred driving strategies, there was no significant difference in the per-
ceived usefulness of the four strategies investigated (i.e., ‘Slow down, look out’, ‘Look
out, slow down’, Reduce speed, be alert’, ‘Be alert, reduce speed’). However, when
asked to provide reasoning for their preferences, the most common response from
participants was that slowing down was the more important of the two driving be-
haviours and, thus, should be presented fist. There were no substantial differences
between participants’ preference for the wording of this strategy, which suggests that

‘slow down’ or ‘reduce speed’ are both appropriate options.

» When asked to offer suggestions to improve the driving strategies, of those who did
respond to this question, there were mixed responses regarding whether the type of
animal should be identified or not, though a greater proportion of those who respon-
ded were in favour of specifying the type of animal (via text or image). This finding
may reflect the discrepancies in performance observed between the four message
concepts across the quantitative measures, and may further reiterate the possibility
that the strength of certain messages (or aspects of) may differ depending on contex-
tual elements (e.g., time of day, type of animal) and the priorities of the signage (i.e.,
whether the understanding that the message is a real-time warning is a higher priority

than seeing increases in intentions to engage in the safe driving behaviour)

» When considering the practical implementation of the signage, participants offered
several suggestions regarding design elements and placement of the signage. The

most frequently offered suggestions were:
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- The most common suggestion offered by participant regarding design elements
was that the sign should feature flashing lights to attract attention. Several parti-
cipants also emphasised the need for motorists to understand the real-time nature
of the warning and expressed concerns that motorists may become complacent if
the signs are consistently active and/or they do not see the animal that they have
been informed has been detected. These findings speak to the importance that
the sign remain blank and only activate (by flashing on) only when an animal has
been detected. In the longer term, such findings also signal the potential value
of a broader public education campaign to raise awareness of this messaging

technology so that motorists are aware of it when they encounter it on-road.

- Although that the use of colour and typography was frequently commented upon
in the focus groups in Study 1, very few participants mentioned these design ele-
ments in their feedback in Study 2. All four message concepts tested in the present
study were monochromatic (amber) and featured the same style of lettering; and
each received similarly strong results across measures. This finding suggests that
the intricacies related to the design of the signage are unlikely to be important
factors when it comes to influencing driving behaviour. Conversely, the findings
could support the choice of lettering and font colouring were as relevant and

effective as any other option that a participant could potentially consider.

- Several participants also reported that it was important for them to know how
long, in terms of distance, that can expect to see the animal and when they can
return to regular driving practices. This finding, alongside findings related to the
need for motorists to understand that that the message is a real-time warning once
again speaks to the importance of implementing a broader education campaign to
accompany the instalment of the signage and that continues to evolve alongside

the capabilities of the detection technology.

4.4. Conclusions

4.4.1 Key Findings

This program of research applied the SatMDT [1] to develop and evaluate messages that
sought to (i) alert drivers to the real-time presence of an animal on or near the road, and

(ii) encourage drivers to adopt safe driving behaviours (i.e., slow down and scan the road
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environment) to minimise the risk of a potential accident due to the presence of the animal.
The messages were to be displayed as part of a larger project testing an innovative large
animal activated roadside monitoring and alert (or LAARMA) system. The following section

summaries the key findings that can be drawn from this research.

4.4.1.A. Message Development

Study 1 explored participants’ responses and perceptions towards a series of preliminary
dual-screened message concepts intended on display on a roadside VMS. There was no
single message concept that was preferred as it was, instead participants drew out specific
elements of each screen of each of the presented concepts that they found to be effective
or ineffective. For Screen 1, participants reported that the combination of text and image,
rather than a text-only or image-only’ design, would be most effective. Participants reported
a preference for terms including ‘cassowary detected’, ‘cassowary ahead’, and ‘cassowary
seen’, citing that these terms were stronger indicators that the message was a real-time
warning that an animal was in the vicinity. Some participants reported concerns about
identifying the type of animal as it might encourage some motorists to become distracted to
try and see the animal; however, most participants agreed that specifying the type of animal
would help drivers scan more purposefully and anticipate how the animal might behave
based on their prior knowledge. For Screen 2, participants reported a preference for the
driving strategies ‘Look out and slow down’ and ‘Reduce your speed. Be alert.’, although
the latter received mixed responses. Regardless of the specific wording of the strategies,
participants reported that the instruction to slow down was the more important of the two
strategies and, thus, ought to be presented first. Participants also reported that the strategies
should be shortened, highlighting the need for the message to be simple and easy to read.
For general comments about the messages, participants emphasised that it was essential that
motorists understood it was a real-time warning that animals were in the immediate areaq,
and that the presence of said animal is understood to be road hazard rather than a local
attraction. To assist in disseminating this knowledge, participants suggested that a campaign
should be run alongside the implementation of the signage to increase public awareness of

the animal detection technology.

4.4.1.B. Message Concepts

Four message concepts were developed based on the findings from focus groups in Study 1

(see pages 15-16) and were further evaluated in Study 2. Overall, all four message concepts
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performed consistently well across all direct and indirect measures of effectiveness, which
suggests that the implementation of any of these concepts would likely have the intended
effects on driving behaviours. However, there were instances where some concepts outper-
formed others on specific measures and suggests that there is scope to selectively apply
messages according to the parameters that are considered of highest priority. The following
summaries the key findings from Study 2 and highlights the areas where specific message

concepts were observed to have stronger effects.

Study 2 found no substantial differences between the four message concepts in terms of
message effectiveness, with all having mean scores that suggest that participants found their
allocated message relatively effective. Participants in all four message concept conditions
also perceived their allocated message to be more influential on themselves than on other
motorists in general and other motorists of a similar age and gender. Given that individuals
may be more persuaded by messages that they perceive are more relevant to themselves
than others, it is important that motorists perceive that message have a greater influence on

themselves compared to other motorists.

The mean scores related to message rejection showed that participants generally disagreed
that they would stop suddenly in their lane to try and see the animal, slow down and move off
to the side of the road to try and see the animal, or simply ignore the messaging if they saw
the message while driving. The mean scores also showed that participants had a stronger
assumption that the message was a real-time warning rather than a general warning, with
significantly higher scores reported by those who viewed message concept 1 and message
concept 2. These two concepts featured the same text (i.e., Screed 1: ‘Cassowary detected’,
Screen 2: ‘Slow down, look out’) and may suggest that the language used in these concepts

better conveys the immediacy of the message.

The mean scores for attitudes, intentions, and willingness to slow down and scan when
driving during the day and during the night were relatively high (i.e., 5 or 6 and above on
a 7-point scale) both before and after viewing the message, indicating that sample were
consistently well-receiving of the importance of messaging about the presence of animals in

the road environment.

Participants in all four message concept conditions reported more favourable attitudes
towards slowing down and scanning the road environment, during the day and night, after
viewing the message. Participants reported significant increases in attitudes towards slowing
down after viewing message concept 1 (day and night), and message concepts 2 and 4

(day only). Those who viewed message concept 3 reported significant increases in attitudes
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towards both behaviours during the day and night.

The results for intentions and willingness were mixed, with scores for some message con-
cepts observed to increase for certain behaviours are certain times of the day and decrease
for others. It is unclear why these discrepancies occurred, but it may due to ceilings effects
given the already high pre-message scores (and noting that mean scores tended to be slightly
lower for attitudes, hence why these effects may not have appeared in attitudes) Trends in the
results showed that participants reported higher intent and willingness to slow down during
the day after viewing the message but showed lower intent and willingness to scan regard-
less of the time of day. Notably, message concept 3 showed the most consistent increases
in intent and willingness to perform both behaviours, and participants reported significantly
higher intention and willingness to slow down and scan at night. As message concept 3 was
the only message that did not identify the type of animal that had been detected (i.e., Screen
1: ‘Animal ahead’), this finding may suggest that participants would be more inclined to slow
down and scan when they are unsure what they are looking for during the night where

visibility is already comprised.

Participants in all four message concept conditions reported that it was quite unlikely (i.e.,
reported scores of 3 or less on a 7-point scale) that they would stop suddenly to try and
see the animal before viewing the message, and these scores decreased further after seeing
the message. Significant decreases in scores were observed from Message concepts 1 and 2
(during the day and night) and message concept 4 (night only). These three message concepts
all identify the type of animal and may suggest participants were less inclined to stop because
they were aware of what they ought to be looking for (i.e., had some understanding of how to

react to the situation) or potentially because the specific animal in question was a cassowary.

4.4.1.C. Preferred Driving Strategies

Study 2 evaluated participants’ preferred driving strategies by asking them to rate the extent
to which they agreed each strategy was useful. There were no significant differences found
between the four driving strategies and participants reported all strategies to be relatively
useful (i.e., provided scores of 5 or 6 or above on a 7-point scale). However, when asked
to provide reasoning for their preferences, commonly reported that slowing down was the
more important of the two driving behaviours and suggested that this strategy be presented
first which reflects the findings of Study 1. Participants reported no substantial difference in
preference for ‘slow down’ versus ‘reduce speed’, which suggests that either strategy would

be appropriate for future messaging.

Section 4.4: Conclusions

141



4.4.1.D. Additional Considerations

Three additional themes consistently emerged from the focus groups in Study 1 and the qual-
itative responses in Study 2. First, participants often expressed and opinion on whether the
message should name the type of animal that has been detected. Across both studies, a
greater proportion of participants reported that it would be useful to identify the animal in
the message; however, this finding may also further underscore the possibility that messages
(or elements of) may be more suited to specific contexts (e.g., time of day) or to fulfil higher
priorities (e.g., emphasising the real-time nature of the warning). Second, participants repor-
ted that it was important that motorists understood that the message was a real-time warning
and expressed concerns that motorists might become complacent if the sign were to remain
activated and/or they did not come across any animals while driving. Third, and following
on from the previous point, participants reported the implementation of the signage should
be accompanied by a public campaign to raise awareness of the messaging and associated

animal detection technology.

4.4.2 Strength and Limitations

A strength of this mixed-methods research was that it was guided by a theoretical frame-
work (i.e., the SatMDT) in developing, concept-testing, and evaluating messages aimed to
alert drivers to the presence of and animal on the road and to encourage safe driving beha-
viours to avoid collisions with the animal. Further, the research included several direct (i.e.,
TPE, message rejection) and indirect (i.e., attitudes, intentions, willingness, and likelihood of
stopping) measures of message effectiveness to provide an in-depth evaluation of four of the
message concepts examined in the evaluation study, Study 2. Also in Study 2, the inclusion of
the control (no message) condition allowed for comparisons to made with the experimental
(message) conditions on the indirect measures of effectiveness, thus providing insights into

the effectiveness of messaging relative to a baseline of no messaging at all option.

Despite these strengths, there are some limitations of this research which also need to be
acknowledged. First, participants comprised a convenience sample recruited via an Australian
marketing recruitment company. Moreover, the sample of Study 2 comprised primarily of
older, female motorists who held an open licence. Therefore, the Study 2 sample may not
accurately represent the diversity of motorists in Australia who will encounter areas where
this signage is displayed. Second, the research relied on self-report data which only assessed
how participants perceived they would respond to each message. Additionally, the research

only assessed the message concepts immediately as they were shown, and further longer-
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term assessment is required to determine the level of effectiveness these messages have
in influencing actual driver behaviour. The latter forms part of subsequent research in the
overall LAARMA project which will comprise a simulator study as well as an on-road field

trial in North Queensland.

4.5. Practical Consideration for Implementation

Based on the findings from the current program of research, three key practical considerations
are offered regarding the future implementation of messaging design to alert moftorists that an
animal has been detected in the area and, subsequently, engage in safe driving behaviours
(i.e., slowing down and scanning). Specifically, these considerations relate to content of the
message, the design of the signage and broader aspects associated with the implementation

of the signage:

1. All four message concepts performed relatively well in Study 2; however, certain mes-
sage concepts did demonstrate stronger performance on specific parameters. This
finding suggests that, while all four message concepts are likely to have the anticip-
ated impact on the two driving behaviours and thus could further developed into final,
ready-to-be-implemented signage, it may be pertinent to identify what the key priorit-
ies for the messages and implement specific messages based on their performance in
these metrics. For example, message concepts 1 and 2 (or elements of) would be more
appropriate if it is determined that the most important factors are to ensure motorists
understand that the message is a real-time warning, and that the message is unlikely

to result in motorists stopping suddenly to see the animal.

2. Participants across both studies echoed the importance that motorists understand that
the message is a real-time warning that an animal had been detected in the areq,
particularly in the interest of avoiding driver complacency. In Study 2, participants
reported that including flashing lights would be useful to reflect the real-time nature of
the messages. These findings speak to the importance that the signage does remain
blank when no animal has been detected, and only activates (i.e., flashes on) when an
animal has been detected (with the understanding that is how the signage was planned
to work). Regarding other design elements, although participants in Study 1 reported
preferences for different colours and certain typography styles, participants in Study 2
did not report strong preferences for these aspects. All four message concepts in Study

2 received strong results using the traditional monochromatic (amber) colour scheme
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and using uppercase for the text on screen 1, and title case for screen 2, which suggests
that, at least for the initial simulator and field testing, the current design elements will be
appropriate, and any future changes to these elements will require further evaluation

before implementation.

. Participants in Study 2 reported that it was important to know the distance of the
detection zone so that they knew when it was safe to return to their regular driving
behaviours. This finding, alongside those related to the importance of understanding
the real-time nature of the warning, speak to the need for broader public education
about the animal detection technology, and for these education campaigns to continue

to evolve alongside evolutions in the technology.
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5.1. Introduction

5.1.1 Background

This study was conducted by Dr Sebastien Demmel, Dr Xiaomeng Li, Dr Mohammed Elhen-
awy, and Prof Sebastien Glaser. This study represented the first of two studies devised as the
means to evaluate individuals’ behavioural responses to the messaging triggered as part of
the LAARMA system. Specifically, this study investigated drivers’ response to two messaging
strategies using a driving simulator. The messaging strategies that were evaluated were
defined previously in Chapter 4, and the two most effective were selected for assessment in
this simulator study. The research consisted of testing several hypotheses regarding drivers’
reaction regarding the effectiveness of the strategies and the impact of the messaging on
driving behaviour (as measured within a driving simulator). The second of the behavioural

evaluation studies, i.e., the field study, is presented in Chapter 7.

5.1.2 Method

The study comprised two balanced groups of participants resulting in a total of 54 drivers.
Fifty-one participants completed the study (23 were males, 27 were females, and one reported
as ‘other’). The participants were aged between 17 and 71 years old, with an average age of
31.8 years old (SD = 14.0 years). The participants reported that they had held their driver
licence for an average of 13.0 years, ranging from 1 year to 51 years, and they drove 8.8
hours in an average week. The driving simulation environment replicated the two initial sites

where the LAARMA system was expected to be installed. These two sites were repeated three

(b)

Figure 5.1.: Two scenarios with cassowary involvement: (a) cassowary walking along the road, and (b) cas-

sowary crossing the road.
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(a) (b) (c)

Figure 5.2.: Visuals for the VMS. The display for VMS; alternated the images (a) and (c), while the display for
VMS; alternated the images (b) and (c).

times, with different scenarios: with a cassowary walking along the road, no cassowary, and
a cassowary crossing the road. The two scenarios involving a cassowary are shown in Figure
5.1. Two different messages (from Study 2 - the messaging evaluation study) were assessed
(see Figure 5.2). The driving simulator system recorded all information in terms of driver
action and vehicle trajectory in relation to the scenario and messaging shown. Two zones
were defined for the analysis, the approach zone at the time of message display and event

zone after the message and the area of (potential) detection of a cassowary.

5.1.3 Key Findings

The comparative analysis of driver behaviour comprised assessing individuals’ responses
in scenarios involving an animal (i.e., a cassowary) crossing a road or walking alongside
the road and for which messaging was triggered via the LAARMA system. These messages
were compared with static sign-based messages. The results revealed distinct patterns. Both
scenarios demonstrated that messaging triggered on the VMS effectively reduced the nor-
malised average speed of drivers in the approach zone window (i.e., zone where messages
are triggered 5 seconds to the actual positioning of the VMS). For the scenario involving a
cassowary crossing the road, VMS; significantly reduced speed, while for the cassowary
walking alongside the road, VMS; showed a statistically significant reduction in speed with
V M S trending towards statistical significance. During the event window zone (i.e., from the
VMS into the detection zone where the cassowary appears), neither VMS; nor VMS; sig-
nificantly reduced drivers’ speeds in either scenario. However, VM S; was found to improve
driving smoothness (celeration at the event) during the animal crossing scenario and signific-
antly increased maximum deceleration; results which indicate overall improvements in driver
responsiveness. These findings indicate that VMS, particularly the messaging as shown in

VMS; (see Figure 5.2), have potential benefits for road safety by prompting cautious beha-
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viour as drivers slow down when approaching potential hazards. The increased awareness
(of a hazard) raised by display of a message on the VMS likely contributes to these safety
benefits, even when animals remain roadside and do not cross the road. Overall, messaging
displayed on roadside VMSs appear to be a valuable tool for managing high-risk areas,
enhancing driver caution as evidenced by them slowing down their travelling speeds when
approaching both cassowary-crossing and -walking scenarios. In the driving simulator, it is
reasonable to suggest that the effect of such messaging is greatest in the approach zone
where drivers respond and reduce speed on sighting of the messaging on the VMS. During
the subsequent event zone, as a simulated drive, given there is no actual risk that a driver
will collide with a cassowary, the speed reductions witnessed initially at the approach zone

are relatively larger (and significant) compared with in the event zone window.

5.2. Study and Participants

The study was approved under a QUT low risk ethics application: “Understanding drivers’

experiences with large animals crossing roads” (QUT Ethics Approval Number 7859).

A total of 54 participants were recruited for the study. Participants were recruited through
social media posts, and emails which were shared with QUT classifieds (an online email
list for QUT staff) and casual staff groups. All participants were required to have a valid
Queensland (or interstate/international equivalent) open driver licence and drive a minimum
of 3 hours per week. Two participants commenced but did not complete the study due
to motion sickness experienced in the simulator, and one participant did not complete the
experiment due to apparatus-related technical issues. Ultimately, 51 participants completed
the experiment. Among the 51 participants, 23 (45.1%) were males, 27 (52.9%) were females
and one reported as “other”. The participants were aged between 17 and 71 years old, with
an average age of 31.8 years old (SD = 14.0 years). The participants reported that they have
held their driver licence for an average of 13.0 years, ranging from 1 year to 51 years, and

they drove 8.8 hours in an average week.

The participants, during the experiment, were exposed to one specific messaging strategy,
which included the visuals in Figure 5.2. The display for VMS; alternated the Figures 5.2a
and 5.2¢, while the display for VMS,; alternated the Figures 5.2b and 5.2c¢.

Section 5.2: Study and Participants

148



5.3. Approach and Event Windows Analysis

VMS is always off _

Figure 5.3.: Map of event zones highlighting driver-animal interaction points and signage locations.

The simulated road environment was based on two real-world locations in FNQ, one on the
Kennedy Highway in Kuranda and the other on Tully Mission Beach Road in Mission Beach.
Sections of the real roads were reproduced in the simulator and duplicated twice to form a
longer road, where each site would appear three times. In Figure 5.3, the reproduced areas
(labelled RX-Y, with X representing the number of the repeated section from 1 to 3, and Y
representing the ID of the section: 1 for the Kuranda site and 2 for the Mission Beach site)
are marked by pink dots along the road, whereas other sections were created ex-nihilo to

connect those sections.

In the reproduced real sections in the simulator, the road layout was faithful to the real-
world locations, with two lanes single carriageway and additional turning lanes at intersec-
tions if present (see Figure 5.4 for examples). The speed limit was also the same as on real
roads: most of the time the speed limit was 80 km/h, but some sections were limited to
60 km/h or even 50 km/h. The connecting sections also consisted of a two lanes single
carriageway with a speed limit of 80 km/h. The environment around the road was designed

to be rural, like the real sites. In the reproduced sections, efforts were made to place objects
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Figure 5.4.: Comparison of real (top) and simulated (bottom) environments. (a) and (c) show the Kuranda site,

(b) and (d) represent the Mission Beach site.

in locations similar to their real-world counterparts, within the limits of the simulator’s objects

library. Road signs were also placed at their actual locations.

The analysis in this study was event-based, focusing on the specific zones where inter-
actions between drivers and animals occurred. The map in Figure 5.3 identifies four main
event zones: at locations R1-1 and R1-2, the animal (i.e., cassowary) is walking on one side of
the road without crossing, while at locations R3-1 and R3-2, the animal (i.e., the cassowary)
crosses the road. To effectively study driver behaviour, it was necessary to define a smaller
analysis window. This window needed to be sufficiently large to capture driver’'s behaviour
upon seeing the message on the VMS, yet not so large as to dilute the effect of the message
in the event area (where the cassowary was detected). This approach window ensured that
the analysis remained focused and accurately reflected driver’s response to the messaging

and presence of the cassowary.

In the analysis of the simulated driving behaviour, we defined two key windows: the event
window and the approach window. The event window captured driver behaviour between
the messaging on the VMS and the point where the Time-To-Collision (TTC) equals zero. The
approach window started 5 seconds before reaching the message on the YVMS and ended
exactly at the VMS. In the following paragraphs, we provide detailed definitions of these two

critical points: when TTC equals zero and when the driver reaches the VMS.

The two subfigures in Figure 5.5 illustrate the time series of distances on the road from
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Figure 5.5.: Visualisation of the Cartesian animal distance, time to reach the “meeting point” for the subject
vehicle (SV TTC), and SV distance during: (a) animal walking interactions (R1-1 and R1-2), and (b)
animal crossing interactions (R3-1 and R3-2). Note that the y-axis represents time for the SV TTC

curve, and distance for both the Cartesian animal distance and SV distance curves.

the vehicle to the meeting point with the animal, the TTC, and the Cartesian distance (i.e.

straight-line distance) between the subject vehicle (SV) and the animal.

Figure 5.5a depicts the time series within the event zones where the animal does not cross
the road, while Figure 5.5b shows the time series within the event zones where the animal
crosses the road. In both subfigures, the blue dashed line represents the Cartesian animal
distance, the red dotted line represents the SV TTC, and the yellow dashed line represents
the SV distance.

It is clear from Figure 5.5 that the SV distance to the animal on the road and the TTC are
crucial for selecting the event analysis window. This means that the analysis window should
end at the point where both the TTC and the distance between the animal and the SV on
the road are zero. The start point of the event analysis window should be the sign location
which is identified using the Cartesian direct distance from the SV to the VMS/static sign and

the time to reach the sign as illustrated in Figure 5.6.

5.3.1 Rationale for Event and Approach Windows Selection

Based on the setup of the LAARMA, the VMS is positioned relative to the sensors in such
a way that it effectively extends the driver’s vision, allowing them to become aware of the
animal well in advance of actually seeing or interacting with it. This early awareness enables

the driver to begin reducing speed before even seeing the animal. Given this, the event
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Figure 5.6.: Visualisation of the Cartesian direct distance from the SV to the VMS/static sign (Sign Distance) and
the time to reach the sign (Sign TTC) during: (a) animal walking interactions (R1-1 and R1-2), and (b)
animal crossing interactions (R3-1 and R3-2). Note that the y-axis represents time for the Sign TTC

curve, and distance for the Sign Distance curve.

window is defined as starting from the VMS and ending when the TTC reaches zero,

marking the point of direct interaction.

Additionally, we define the approach window as the period leading up to the event,
beginning 5 seconds before the VMS and ending at the VMS location itself. This ap-
proach window captures the driver’s initial response to the system, including any potential

speed adjustments made upon seeing the YMS, before entering the critical event zone.

5.4. Background

5.4.1 Celeration

Celeration is a measure of driving smoothness. The following equation defines the celeration

behaviour of the driver in a homogeneous driving environment.

N
C= l anISpeedn>4.3 km/h
N

n=1

where ¢ is the estimated celeration, N is the length of the analysis window, a, is the
measured acceleration at the timestamp 7, and Ispeed, >4.3km/h is an indicator function returns

one if the vehicle is moving and zero otherwise.
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5.4.2 Average Normalised Speed

Regarding the average normalised speed response, the average normalised speed is calcu-

lated using the formula:

Speed;
QiAW SpeedLimit

|AW]

Average Normalised Speed =

where AW is the set of observed speeds in the Analysis Window, and |AW]| is the car-
dinality operator representing the number of observed speeds. This formula normalises the
average speed by the speed limit, providing a comparative measure of how drivers’ speeds

relate to the posted speed limit within the analysis period.

5.4.3 Predictor Variables and Statistical Model Outputs

In the simulator data analysis, we used the following predictors to explain the variability in

the studied response:

1. Participant age: This variable represents the age of the participant in years.

2. Participant gender: A categorical variable with three levels; male (participant_Gender 1),
female (participant_Gender_2), and other (participant_Gender_3). Since the model uses
k-1(i.e., two) indicator variables to represent the three levels, male (participant_Gender 1)
is coded as [0 0] and is included as part of the intercept, making it the reference cat-

egory.

3. Participant driving experience: Represented by the variable participant_Licenceyears,

it measures the participant’s driving experience in years.

4. Participant driving hours per week: This variable (participant_HoursDrivePerWeek) rep-

resents the average number of hours the participant drives per week.

5. Treatment/intervention: A categorical variable with three levels: “Static” (represent-
ing a static sign), “Sign_VMS_1" (representing V M S1), and “Sign_VMS_2" (representing
VMS;). As with the gender variable, we used two indicator variables to represent these
levels in the model. The static sign is coded as [0 0] and is included in the intercept,
serving as the reference category against which the other two levels (Sign_VMS_1 and

Sign_VMS _2) are compared.
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For the sake of completeness we provide the statistical model outputs description (column)

below:

1. Name: Lists the predictor variables included in the model.

2. Estimate: The estimated effect of each predictor on the dependent variable.

3. SE (Standard Error): The uncertainty or variability around the estimate.

4. tStat (t-Statistic): The ratio of the estimate to its standard error, used to test significance.

5. DF (Degrees of Freedom): The number of degrees of freedom associated with the

estimate.

6. pValue: The probability that the observed effect occurred by chance; indicates statistical

significance.

5.4.4 Statistical Methods and Modelling

Advanced statistical modelling techniques were used to ensure the models captured the driv-
ing responses adequately. Generalised linear mixed effect (GLME) models are developed to
enable analysis of dependent data by introducing random variables (i.e., random effects) at
the lower levels of the model. For example, there are repeated measurements from the same
participant and from the same location (i.e., R1-1, R1-2, R3-1 and R3-2). To capture the correl-
ation between the repeated measurements at these levels, random effects were introduced

at the participant and location levels.

5.5. Results Analysis

In this study, we analyse the data collected at locations where animals cross the road separ-
ately from the data collected at locations where animals only walk by the side of the road.
We do this because we believe these two scenarios present different levels of risk, leading
to distinct driver behaviours. The purpose of this statistical analysis is to test the following
safety hypotheses related to the use of the LAARMA system in comparison to static signs:

1. Hypothesis 1: Using LAARMA reduces the normalised average speed of drivers.
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2. Hypothesis 2: LAARMA enhances driving smoothness, as indicated by improved celer-

ation during the event.

3. Hypothesis 3: LAARMA eliminates or reduces harsh deceleration of vehicles compared

to static signs at the event window.

5.5.1 Animals Walk by the Side of the Road

5.5.1.A. Normalised Average Speed at the Approach

Name Estimate SE tStat | DF pValue
(Intercept) 0.933458 | 0.093152 | 10.02076 | 196 | 2.40E-19
participant_age -0.00316 | 0.002154 | -1.46742 | 196 | 0.143866
participant_Gender 2 -0.01906 | 0.013571 | -1.40447 | 196 0.161761
participant_Gender_3 -0.03196 | 0.047889 | -0.66733 | 196 | 0.505348
participant_Licenceyears 0.003371 | 0.002257 | 1.493814 | 196 | 0.136832
participant_HoursDrivePerWeek | 0.000128 0.00131 | 0.097707 | 196 | 0.922265
Sign_VMS_1 -0.02859 | 0.015984 | -1.78849 | 196 | 0.075241
Sign_VMS_2 -0.03369 | 0.015767 | -2.13674 | 196 | 0.033859

Table 5.1.: Statistical analysis of normalised average speed at the approach window.

In this analysis, we examined the effect of the message on the VMS on the normalised
average speed of drivers during the approach window, comparing these messages to static
sign-based messages. The statistical results in Table 5.1 showed that both VM S and VMS,;
had an impact on drivers’ speed. Specifically, the estimate for VMS; was -0.02859 with a
p-value of 0.075241, suggesting a trend towards reduced speed, though not reaching conven-
tional levels of statistical significance. For VMS,, the estimate was -0.03369 with a p-value
of 0.033859, indicating a significant reduction in speed associated with the messaging on

the VMS compared to the static sign-based messages.

These findings imply that messages on the VMS (as devised in the earlier studies of this
project), and particularly VMS,;, effectively reduced drivers’ speed in the approach window
compared fo the static sign-based messages. Thus, the findings suggest such messaging on

the VMS contributed to improvements in road safety by encouraging drivers to slow down
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as they approached the animal. For example, at a speed of 60 km/h, the average speed

reduction for VM S, is approximately 2.02 km/h.

5.5.1.B. Celeration at the Approach

Name Estimate SE tStat | DF pValue
(Intercept) -0.13102 | 0.193962 | -0.67551 | 196 | 0.500145
participant_age 0.017428 | 0.010151 | 1716825 | 196 | 0.087591
participant_Gender_2 0.102233 | 0.063945 | 1.598771 | 196 | 0.111482
participant_Gender_3 -0.12253 | 0.225645 | -0.54303 | 196 | 0.587726
participant_Licenceyears -0.01639 | 0.010633 -1.5414 | 196 | 0.124833
participant_HoursDrivePerWeek | -0.00673 | 0.006171 | -1.09098 | 196 | 0.276619
Sign_VMS_1 0.086838 | 0.075316 | 1152981 | 196 | 0.250322
Sign_VMS_2 0.015922 | 0.074293 | 0.214321 | 196 | 0.83052

Table 5.2.: Statistical analysis of celeration at the approach window.

The analysis of celeration at the approach, where celeration is a measure of driving
smoothness, focused on comparing the effects of messaging on the VMS relative to static
sign-based messages. The statistical results in Table 5.2 indicated that neither VM Sinor
VMS,; showed statistically significant differences in drivers’ celeration compared to the static
sign-based messages. Specifically, the estimate for VM S was 0.086838 with a p-value of
0.250322, and for VMS,, the estimate was 0.015922 with a p-value of 0.83052.

These findings suggest that the presence of messaging on the VMS did not significantly
influence drivers’ celeration behaviour in the approach window compared to the static sign-

based messages.

5.5.1.C. Normalised Average Speed at the Event

The statistical analysis of normalised average speed at the event focused on comparing the
effects of the messaging on the VMS to static sign-based messages. As shown in Table 5.3,
neither VMS1 nor VMS; had a statistically significant effect on drivers’ speed during the
event window. Specifically, the estimate for VM S1 was 0.004813 with a p-value of 0.905227,
and for VMS,, the estimate was -0.01614 with a p-value of 0.685784.
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These findings suggest that the presence of messaging on the VMS did not significantly

influence drivers’ speed during the event window compared to static sign-based messages.

Name Estimate SE tStat | DF pValue
(Intercept) 0.90783 | 0.103818 | 8.744447 | 94 | 8.57E-14
participant_age -0.00181 | 0.005433 | -0.33278 | 94 | 0.740041
participant_Gender_2 -0.02482 | 0.034227 | -0.72515 | 94 | 0.470161
participant_Gender_3 -0.22419 | 0120777 | -1.85625 | 94 | 0.06655
participant_Licenceyears 0.00103 | 0.005691 | 0.18092 | 94 | 0.85682
participant_HoursDrivePerWeek | -0.00342 | 0.003303 | -1.03592 | 94 | 0.302896
Sign_VMS 1 0.004813 | 0.040313 | 0.119382 | 94 | 0.905227
Sign_VMS_2 -0.01614 | 0.039765 | -0.40584 | 94 | 0.685784
Table 5.3.: Statistical analysis of normalised average speed at the event window.
5.5.1.D. Celeration at the Event
Name Estimate SE tStat | DF pValue
(Intercept) 0.54001 | 0.141676 | 3.811582 | 93 | 0.000248
participant_age -0.00871 | 0.007438 | -1.17078 | 93 | 0.244679
participant_Gender_2 0.052128 | 0.046845 112776 | 93 | 0.268673
participant_Gender_3 -0.00573 | 0.164454 | -0.03448 | 93 | 0.972283
participant_Licenceyears 0.007903 | 0.007778 | 1.016043 | 93 | 0.312245
participant_HoursDrivePerWeek | 0.00769 | 0.00452 | 1701109 | 93 | 0.092264
Sign_VMS_1 -0.03813 | 0.055042 | -0.69278 | 93 | 0.490173
Sign_VMS_2 0.017519 | 0.054345 | 0.322376 | 93 | 0.747872

Table 5.4.: Statistical analysis of celeration at the event window.

The statistical analysis of celeration at the event examined the impact of the messaging
on the VMS on drivers’ celeration compared to static sign-based messages. The results in
Table 5.4 showed that neither VM S nor VMS; had a statistically significant effect on driver
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celeration. Specifically, the estimate for VMS1 was -0.03813 with a p-value of 0.490173,
and for VMS,, the estimate was 0.017519 with a p-value of 0.747892.

These findings suggest that the presence of messaging on the VMS did not significantly alter

drivers’ celeration behaviour during the event compared fo the static sign-based messages.

5.5.1.E. Max Deceleration at the Event

Name Estimate SE tStat | DF pValue
(Intercept) -2.62151 | 0.921085 | -2.84611 | 93 | 0.005445
participant_age 0.03923 | 0.048355 | 0.811289 | 93 | 0.419271
participant_Gender_2 -0.67282 | 0.304557 | -2.20917 | 93 | 0.029619
participant_Gender_3 0.081093 1.06917 | 0.075847 | 93 | 0.939704
participant_Licenceyears -0.03461 | 0.05057 | -0.68438 | 93 | 0.495438
participant_HoursDrivePerWeek | 0.001203 | 0.029389 | 0.040945 | 93 | 0.967427
Sign_VMS_1 0.593694 | 0.357846 | 1.659075 | 93 | 0.100469
Sign_VMS_2 0.43463 | 0.353313 | 1.230154 | 93 | 0.221742

Table 5.5.: Statistical analysis of maximum deceleration at the event window.

The statistical analysis of maximum deceleration at the event aimed to compare the effects
of messaging on the VMS with static sign-based messages on driver behaviour. The results
in Table 5.5 showed that neither VMS; nor VMS; had a statistically significant effect on
drivers’ maximum deceleration. The estimate for VMS; was 0.593694 with a p-value of
0.100469, and for VMS,, the estimate was 0.43463 with a p-value of 0.221742. Moreover,
participant_Gender_2 (representing female participants) appears to have a statistically signi-
ficant effect on maximum deceleration. The estimate for participant_Gender_2 is -0.67282,
with a p-value of 0.029619, which is below the typical significance threshold of 0.05. This in-
dicates female participants tend to have stronger deceleration compared to male participants

(the reference group).

Although V M S1 approached significance, these findings suggest that when the animal is
on the side of the road, the presence of the VMS does not substantially influence maximum

deceleration compared to static signs.
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5.5.1.F. Animal Walking Conclusion

The analysis highlights that messaging on the VMS effectively reduced the normalised aver-
age speed of drivers, particularly in the approach window, with VM S, showing a statistically
significant reduction in drivers’ speed and VM S; indicating a notable trend toward reduced
drivers’ speed. Such findings suggest that messaging on the VMS offers road safety benefits
by prompting drivers to slow down as they approach potential hazards, such as animals.
However, the findings also indicate that messaging on the VMS did not significantly impact
other aspects of driver behaviour, such as celeration and maximum deceleration, during the
event window. We hypothesise that the messages may be functioning to raise drivers’ aware-
ness of the animal’s presence, but since the animals stayed on the roadside without crossing,
drivers did not slow down significantly. Consequently, no significant differences in celeration
or maximum deceleration were detected between the VMS and the static sign-based mes-
sages. It is also is reasonable to suggest that given assessment of driving behaviour within
a simulator and there being no prospect of a participant actually colliding with a cassowary,
the largest (and significant) reduction in drivers’ speed would be found on approach when

responding to the messaging being displayed rather than in the actual event zone.

5.5.2 Animals Cross the Road

5.5.2.A. Normalised Average Speed at the Approach

Name Estimate SE tStat | DF pValue
(Intercept) 0.859941 | 0.060821 141389 | 196 | 9.51E-32
participant_age -0.00166 | 0.001876 | -0.88542 | 196 | 0.377016
participant_Gender_2 -0.02484 0.01182 | -2.10164 | 196 | 0.036863
participant_Gender_3 -0.03172 | 0.041709 | -0.76054 | 196 | 0.447845
participant_Licenceyears 0.002382 | 0.001965 | 1.212004 | 196 0.22697
participant_HoursDrivePerWeek | -0.00147 | 0.001141 -1.28611 | 196 | 0.199921
Sign_VMS_1 -0.03422 | 0.013921 | -2.45829 | 196 | 0.014828
Sign_VMS _2 -0.02647 | 0.013732 | -1.92724 | 196 | 0.055396

Table 5.6.: Statistical analysis of normalised average speed at the approach window.

Section 5.5: Results Analysis

159



In this analysis, we examined the effect of VMS on the normalised average speed of drivers
during the approach window, comparing these messages to static sign-based messages. As
presented in Table 5.6, the statistical results showed that both VMS; and VMS; had an
impact on drivers’ speed. Specifically, the estimate for VM S was -0.03422 with a p-value of
0.014828, indicated a significant reduction in drivers’ speed compared to the static signs. For
VMS,, the estimate was -0.02647 with a p-value of 0.055396, suggesting a trend towards

reduced drivers’ speed, though not reaching conventional levels of statistical significance.

These findings imply that messaging on the VMS, particularly V M S, effectively reduced
drivers’ speed in the approach window compared to the static signs. For example, at a speed

of 60 km/h, the average speed reduction for VMSy is approximately 2.05 km/h.

5.5.2.B. Celeration at the Approach

Name Estimate SE tStat | DF pValue
(Intercept) -0.51684 | 0.306166 | -1.68809 | 196 | 0.092983
participant_age 0.043367 | 0.016024 | 2.706416 | 196 | 0.007401
participant_Gender_2 0.20751 | 0.100937 | 2.055846 | 196 | 0.041123
participant_Gender_3 -0.29821 | 0.356179 | -0.83725 | 196 | 0.403471
participant_Licenceyears -0.04806 | 0.016785 | -2.86316 | 196 | 0.004651
participant_HoursDrivePerWeek | 0.001166 | 0.009741 | 0.119685 | 196 | 0.904855
Sign_VMS_] -0.0486 | 0.118885 | -0.40881 | 196 | 0.683124
Sign_VMS_2 0.040283 0.11727 | 0.343509 | 196 | 0.731584

Table 5.7.: Statistical analysis of celeration at the approach.

In this analysis, we focused on assessing the impact of messaging on the VMS on drivers’
celeration during the approach window, comparing their response relative to static sign-based
messages. The statistical results in Table 5.7 indicated that neither VMS1 nor VMS; showed
statistically significant differences in drivers’ celeration compared to the messages on the
static signs. Specifically, the estimate for VMS; was -0.0486 with a p-value of 0.683124,
and for VMS,, the estimate was 0.040283 with a p-value of 0.731584.

These findings suggest that the presence of messaging on the VMS did not significantly
influence drivers’ celeration behaviour in the approach window compared to the static signs,

which serve as the sole reference point in the simulator study design.
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5.5.2.C. Normalised Average Speed at the Event

Name Estimate SE tStat | DF pValue
(Intercept) 0.972047 0.10552 | 9.211945 | 196 | 5.00E-17
participant_age -0.0095 | 0.004438 | -2.14069 | 196 | 0.033535
participant_Gender_2 -0.07692 | 0.027959 | -2.75132 | 196 | 0.006492
participant_Gender_3 -0.11744 | 0.09866 -1.1904 | 196 | 0.23533
participant_Licenceyears 0.011039 | 0.004649 | 2.374397 | 196 | 0.018543
participant_HoursDrivePerWeek | -0.00176 | 0.002698 | -0.65209 | 196 | 0.515108
Sign_VMS_1 -0.03255 | 0.032931 | -0.9885 | 196 | 0.324125
Sign_VMS_2 -0.04894 | 0.032483 | -1.50661 | 196 | 0.133521

Table 5.8.: Statistical analysis of normalised average speed at the event window.

In this analysis, we examined the impact of VMS on the normalised average speed of
drivers during the event window, comparing the VMS messages to static sign-based mes-
sages. The statistical results, presented in Table 5.8, showed that neither VMS; nor VMS;
had a statistically significant effect on drivers’ speed during the event window. Specifically,
the estimate for VMS; was -0.03255 with a p-value of 0.324125, while the estimate for
VMS; was -0.04894 with a p-value of 0.133521.

These results indicate that, unlike in the approach window, the presence of messaging on
the VMS did not significantly influence driver behaviour in terms of speed reductions during
the event window when compared to the static signs. As previously mentioned, we believe it
is reasonable to suggest that given assessment of driving behaviour within a simulator and
there being no prospect of a participant actually colliding with a cassowary in the event zone,
the largest (and significant) reduction in drivers’ speed would be found on approach when

responding to the messaging being displayed rather than in the actual event zone.

5.5.2.D. Celeration at the Event

In this analysis, we examined the celeration behaviour of drivers at the event, where celeration
is defined as a measure of driving smoothness. The statistical analysis, presented in Table 5.9,
focused on the comparison between messaging on the VMS and static sign-based messages.

The results showed that the presence of V M S significantly impacted drivers’ celeration, with
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Name Estimate SE tStat | DF pValue
(Intercept) 0.397452 0.114529 | 3.470319 | 185 | 0.000647
participant_age 0.003192 | 0.00568 | 0.561861 | 185 | 0.574891
participant_Gender_2 0.054289 | 0.034769 | 1561409 | 185 | 0.120136
participant_Gender_3 0.04443 | 0.119067 | 0.373148 | 185 | 0.709465
participant_Licenceyears -0.00332 | 0.005902 | -0.56226 | 185 | 0.574621
participant_HoursDrivePerWeek | 0.005483 | 0.003389 1.617955 | 185 | 0.107376
Sign_VMS_] -0.09901 | 0.040649 | -2.43575 | 185 | 0.015809
Sign_VMS _2 -0.00764 | 0.040214 | -0.189999 | 185 | 0.849522

Table 5.9.: Statistical analysis of celeration at the event.

an estimate of -0.09901 and a p-value of 0.015809, indicating smoother driving behaviour
when VMS; was present compared to static signs. In contrast, VMS, did not show a

statistically significant difference, with an estimate of -0.00764 and a p-value of 0.849522.

These findings suggest that VM S, was more effective in influencing driver behaviour
towards smoother driving compared to the static signs, while VMS, did not significantly

alter drivers’ celeration.

5.5.2.E. Max Deceleration at the Event

The statistical analysis of the GLME model of the max deceleration at the event revealed
significant findings related to the type of signs used. As presented in Table 5.10, the results
showed that both the messages on the VMS, VMS; and VMS,, had a significant, positive
impact on the maximum deceleration of vehicles compared to the static sign-based mes-
sages, resulting in less harsh deceleration. In particular, VMS1 had a stronger influence,
with an estimate of 1.205 and a highly significant p-value of 0.000351, indicating a notice-
ably smoother deceleration. Similarly, VMS;, with an estimate of 0.678 and a p-value of

0.0399, also significantly softer deceleration.

These findings suggest that implementing messaging on VMS can enhance driver respons-
iveness, resulting in less harsh deceleration rates (i.e. closer to zero since deceleration is

negative) when compared to drivers’ responses fo traditional static sign-based messages.
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Name Estimate SE tStat | DF pValue
(Intercept) -413298 | 1.050923 | -3.93271 | 185 | 0.00019
participant_age 0.04086 | 0.046254 | 0.883381 | 185 | 0.378177
participant_Gender_2 -0.13623 | 0.283104 -0.4812 | 185 | 0.630945
participant_Gender_3 0.996165 | 0.969473 | 1.027533 | 185 | 0.30551
participant_Licenceyears -0.05439 | 0.04806 -11316 | 185 | 0.259266
participant_HoursDrivePerWeek | 0.000122 | 0.027591 | 0.004411 | 185 | 0.996485
Sign_VMS_1 1.205308 | 0.33097 | 3.64175 | 185 | 0.000351
Sign_VMS _2 0.677627 | 0.32743 | 2.06953 | 185 | 0.03988¢6

Table 5.10.: Statistical analysis of maximum deceleration with VMS and static signs at the event.

5.5.2.F. Animal Crossing Conclusion

The statistical analysis of driver behaviour in response to purpose-devised messaging on
roadside VMS compared to static sign-based messages revealed several key insights. VM S
was particularly effective in reducing the normalised average speed of drivers in the ap-
proach window, indicating drivers were exhibiting increased caution as they slowed down
and approached the animal’s crossing point. However, neither VMS; nor VMS; signific-
antly impacted drivers’ speed during the event window. Interestingly, VMS; also promoted
smoother driving behaviour during the event, as evidenced by significant improvements in
celeration. Additionally, both VMS1 and VMS; significantly increased maximum deceler-
ation (i.e. speeds closer to zero), with VMS; showing a stronger effect relative to its other
VMS counterpart. These findings suggest that implementing LAARMA, and particularly with
VMS;, displayed, offers road safety benefits in terms of drivers’ increased caution and slow-

ing down; thus, making such messages (on VMS) a valuable tool for helping to address AVCs.

5.5.3 Conclusions

The driving simulator study shows that the VMS messaging strategies effectively reduce driver
speeds in the approach window, with VM S; reducing speed for animal crossings and VMS;
for animal walking. While neither VMS1 nor VMS; significantly impacted driver speed in
the event window, VMS; improved driving smoothness and driver responsiveness during

crossings. Overall, the VMS messaging enhances road safety by increasing driver caution in
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high-risk areas. A detailed comparison summary of VMS,

and walking scenarios is presented in Table 5.11.

and VMS; in animal crossing

the average speed
reduction is approx-
imately 2.05 km/h)

the average speed
reduction is approx-
imately 2.02 km/h).
VMSq

trend towards re-

showed a

duced speed.

Aspect Animal Crossing Animal Walking Comparison Summary

Approach VMS; significantly | VMS, significantly | Both scenarios show that
Window reduced speed. At a | reduced speed.at a | VMS effectively reduces
Speed speed of 60 km/h, | speed of 60 km/h, | normalised average

speed in the approach

window.

Event Window

Neither VMS; nor

Neither VMS; nor

VMS did not significantly

significantly.

Speed VMS; significantly | VMS, significantly | impact driver speed dur-
impacted speed. impacted speed. ing the event window in

either scenario.
Celeration VMS, improved | VMS did not signific- | VMSq1 enhances driving
(Driving driving smoothness | antly impact celera- | smoothness during an-
Smoothness) | (celeration at event) | tion. imal crossings; no sig-

nificant impact observed

during animal walking.

Event Window
Maximum

Deceleration

Both VMS; and
VMS,

increased maximum

significantly

deceleration by 1.21
and 0.68
m/sec?, respectively,
with VMSq showing

a stronger effect.

m/sec?

VMS did not signi-
ficantly impact max-

imum deceleration.

Both VMS; and VMS,
significantly  increased
maximum  deceleration
(make it closer to zero) in
animal crossing scenario,
suggesting better driver

responsiveness.

Overall  In-

sight

VMS, particularly
VMS,,

driver caution and

enhance

responsiveness in
high-risk

crossing zones.

animal

VMS enhance road
safety by prompting
drivers to slow down
in the approach win-
dow, but no signific-
ant impact on other

behaviours.

VMS are valuable for
high-risk

areas, improving driver

managing

caution and responsive-
ness.  Messages likely
raise awareness, contrib-
uting to safety benefits
even when animals do

not cross the road.

Table 5.11.: The comparison summary of the two messaging strategies in animal crossing and walking scen-

arios.
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6.1. Introduction

This chapter provides details about the field trial of the developed LAARMA system in FNQ.
This study was approved by USYD Animal Ethics Committee (project number: 2023/2398).

The chapter begins with an introduction of the two data collection locations and a summary
of the findings from the collected data in Section 6.2. This is followed by detailed information
about the on-road trial in Section 6.3. Importantly, Section 6.4 explains the data extraction
processes and data usage for model training, serving as a bridge between field data collection
and self-training machine learning. Section 6.5 summarises the challenges faced and the
technological lessons learnt during the data collection and the on-road trial. Lastly, the

conclusions are drawn with recommendations provided in Section 6.6.

6.2. Data Collection

The developed animal detection system was set up at two sites for data collection in Kuranda,
QLD, before the on-road trial commenced. The collected data include RGB images, thermal
images, and LiDAR point clouds. Field data collection is essential for training a machine
learning model that works well for animal detection in a particular environment. For this
Kuranda field trial, a total of 97 days’ worth of data has been collected from two locations
for model training. After multiple iterations of updates, the performance of the trained model

has improved significantly before it was deployed for the on-road trial.

The timeline of important activities during the data collection stage is listed in Table 6.1.

Note that the VMS did not show any message during the data collection stage.

Date Range Activity Location

24 January 2024 Field Installation A

24 January 2024 - 6 March 2024 | Data Collection

A
6 March 2024 System Relocation B
B

6 March 2024 - 30 April 2024 Data Collection, Model Training

Table 6.1.: Timeline of activities during the field data collection.
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6.2.1 System Installation

(c) (d)

Figure 6.1.: Installation of the animal defection system onto the VMS trailer and its deployment in the field
are shown. (a) shows the VMS trailer in the field with the detection system installed. In (b), the
VMS trailer is being set up in the field. (c) takes a closer look at the sensor head of the detection
system installed onto the pole of the VMS trailer. Its components, from top to bottom, include: a
black cap housing WiFi, GPS, and 4G antennas for communication; a white electrical junction box;
an aluminium enclosure for the thermal camera; two RGB cameras (the left being the medium-
angle camera and the right, the telephoto camera); and the solid-state LiDAR. (d) shows the edge
computing and networking devices, as well as cabling in the control box. From left to right: the
NVIDIA Orin computing unit; the QNAP network switch; and the Teltonika router.

The developed animal detection system was installed onto a VMS ftrailer with technical
assistance from RoadTek. The sensor head was mounted on the mast of the trailer, at the
back of the display board, as depicted in Figure é.1c, while the network equipment and the
edge computing components were installed in the white control box of the trailer, as Figure
6.1d shows. The system draws 12V DC power from the trailer’s solar power system. After

installation, the trailer was towed to the field for data collection and the subsequent on-road
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trial, as Figure 6.1a and Figure 6.1a illustrate. Note that, at the time of installation, the signal
connection between the animal detection system and the VMS was not complete. However,

this was resolved before the on-road trial began, as explained in Chapter 6.3.

6.2.2 Collection Locations

Figure 6.2.: The Google Earth image showing the bird’s eye view of the field trial site in Kuranda, QLD. It

highlights two locations, A and B, for the field data collection. The yellow polygon marks the
frequent crossing area for cassowaries according to the field-collected data.

The system was first set up at Location A in late January 2024, as illustrated in Figure
6.1b and also in Figure 6.2, for the initial stage of field data collection. This is also the pilot
stage where the actual cassowary crossing area is identified to provide insights for location

optimisation.

Although there was no visual detection model trained for cassowary detection available
at the beginning of the data collection stage, an instance of the YOLOv8 model pre-trained
on the popular COCO dataset was running continuously for each of the four camera image
channels to validate the computational capability of the edge computer in handling the four
image processing pipelines in parallel. An example of the camera images with real-time

detection results is illustrated in Figure 6.3.

There are technical and environmental challenges such as the solar power issue, weather
influence, and the sensor occlusion problem, which are detailed in Section 6.5. The major
limitation for sensing at Location A is the combination of visual occlusion caused by the red
traffic signage and the hilly terrain of the road, and the heavy bias of crossing cases at a far

distance. As Figure 6.4 shows, at a distance of 180 metres and over, the crossing cassowary
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Figure 6.3.: A screenshot of the H.265 video recording shows example RGB and thermal camera images from

Location A. Top left: RGB image from the medium-angle camera; Top right: digitally zoomed
RGB image from the medium-angle camera; Bottom left: RGB image from the telephoto camera;
Bottom right: image from the thermal camera. The timestamp of these images is shown at the
bottom. Each image also has the overlay of bounding boxes of detected objects generated by its

corresponding YOLOv8 detection model.

appears at a reasonable size only in the telephoto camera but is too small to be detectable
by the medium-angle and thermal cameras. This causes a lack of range diversity in the
crossing cases for testing the effectiveness of the cameras, which otherwise can cover short-,

mid-, and long-ranges.

The data collected at Location A has helped formulate a guideline for finding a more op-
timal location for the next stage of data collection and the on-road trial. It should balance
different considerations, including the optimal distance to the actual crossing area, minimal
optical occlusion, maximum sunlight exposure, and terrain and safety constraints for deploy-
ing the LAARMA system. After analysing the recorded crossing cases, it was found that the
vast majority of crossing cases occur in the area highlighted by the yellow polygon in Figure
6.2. With the above criteria taken into consideration, a more optimal location was proposed

as the new location for data collection, which is Location B.

The VMS trailer, together with the detection system, was relocated to Location B in early
March 2024. In the meantime, extra solar panels were connected to the VMS trailer’s power

system to alleviate the power issue.

As Figures 6.5 and 6.6 show, Location B has improved visibility of cassowaries crossing
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(b)

(c) (d)

Figure 6.4.: An example of a cassowary crossing case at a distance of 180 metres from Location A. (c) shows the
cassowary on the road in the telephoto camera image. (a), (b), and (d) show the same cassowary
in medium-angle, digital-zoomed, and thermal images, respectively. As the figures illustrate, the

cassowary appears too small to be detectable in (a), (b), and (d).

at different ranges. Data collected at this location are richer in terms of range diversity and
sensor modality, thus contributing more to the training and evaluation of the cassowary
detection models. Also, with the increase in solar power capacity, the system managed to
perform 24-hour continuous recording for most days before the trial commenced. This gave

us an opportunity to monitor the cassowary crossing scenarios at night, if there were any.

Those technical and environmental challenges at Location A still existed at Location B. Some
of them have improved, such as the solar power issue and the sensor occlusion problem.

The sensor angle shift issue, however, remained severe at Location B. Please refer to Section
6.5.4 for details.

During the data collection, several findings related to the cassowary crossing were ob-

served. Please refer to Section 7.2.1 for detailed statistics and data analysis results.
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(b)

(c) (d)

Figure 6.5.: An example of cassowary crossing case with a distance of 45 metres from the Location B. (a),
(b), and (d) show the same cassowary in medium-angle, digital-zoomed, and thermal images,
respectively. Earlier, the cassowary was in the view of the telephoto image. As the figures illustrate,

the cassowary appears a good size to be detectable by YOLOvS in all images.

6.3. On-Road Trial

The on-road trial started on 30 April 2024 at Location B. The trial required the readiness of

the following four important components:

+ A reasonably well-trained animal detection model. After many iterations of training
using the collected field data, the trained detection model has shown excellent per-
formance in the model evaluation. Two examples are provided in Figure 6.7. Despite
still producing false positive detections, the model has the potential to be further im-

proved by fine-tuning parameters and retraining with the false positive data.

+ The signal interface between the animal detection system and the VMS for turning on
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(b)

(c) (d)

Figure 6.6.: Another example of cassowary crossing case with a distance of 135 metres from the Location
B. (a), (c), and (d) show the same cassowary in medium-angle, telephoto, and thermal images,
respectively. (b) shows the view from the digital-zoomed image. As the figures illustrate, the

cassowary appears a good size to be detectable by YOLOV8 in the telephoto image.

and off the message display. After a few site visits, RoadTek technicians managed to
connect the digital output of the animal detection system with the VMS's designated

digital input pin for controlling its message display.

+ The developed message content. The QUT team provided message concepts for use
in the on-road trial after the message development, concept testing, evaluation survey
study, and the driving simulator study. The message content was loaded to the VMS,
and the message screen duration was configured before the on-road trial started, as
Figure 6.8 shows.

+ The capability of monitoring driver behaviour as a response to the message. The
driver behaviour data are mainly collected from traffic detection sensors, such as the

pneumatic road tubes RoadTek installed at four locations before and after the YMS
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location prior to the on-road trial. Additionally, the data from the cassowary detection

sensors can provide extra sensor modality for analysing driver behaviour.
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(a) (b)

Figure 6.7.: Two examples of using a trained model for cassowary detection in image frames from (a) the
telephoto camera and (b) the medium-angle camera.

(a) (b)

Figure 6.8.: The developed two-part message displayed on the YMS for notifying motorists the real-time cas-
sowary detection event. Once triggered, the two parts, shown in (a) and (b), are looping for a
variable period of time depending on how long the detection event persists before the display
turns off.

The programmed logic for the VMS operated as follows:

» When the detector registers a cassowary, the sign is activated immediately, initiating a
countdown of ¢ seconds

+ If the detector continues to detect the cassowary, the countdown resets to t seconds

+ The sign deactivates t seconds after the last detection
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Figure 6.9.: A screenshot of the traffic camera recording confirms the VMS turned on as soon as a cassowary
was detected in the scene. (a) shows the original screenshot, and (b) has the important area
zoomed in for better visualisation.

In the field, cassowary detection can be intermittent due to factors such as distance, tem-
porary occlusion by vehicles, or the cassowary moving out of the camera’s FoV. The value
of t is a design parameter. A longer t smooths out intermittent detections but may keep the
VMS active longer than necessary. A shorter t provides a more real-time warning but results
in more frequent sign activations and deactivations. For the on-road trial, f was set to 60

seconds.

The recording from a TMR traffic camera monitoring the on-road trial area was used
to check the VMS status in correspondence with the triggering signal from the cassowary
detection system. After checking the first two weeks of the on-road trial, it was found that
in many cases the VMS was working as expected. One such case is shown in Figure 6.9.
However, in the remaining cases, the VMS was not turned on despite the reception of the
triggering signal from the detection system. It was later found that in those missed message
display cases the VMS trailer did not have sufficient power to turn on the sign due to low
battery voltage in the early mornings or on bad weather days. As discussed in detail in
Section 6.5.1, the issue was mitigated after a RoadTek site visit on 14 May 2024, where the
battery was charged up, and the LiDAR was disconnected from the detection system to cut

the power consumption.

Those missed message display cases, if not properly identified, can affect the accuracy
of the driver behaviour analysis. To address this, TMR conducted manual inspection in the

recording from the traffic camera to verify the VMS status for each case.
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6.4. Data Extraction and Usage

There are two data logging schemes implemented in the animal detection system—continuous

data logging and event-triggered data logging—for different purposes.

The continuous logging operates as long as the system is running, providing low frame rate
sensory data for 1) model training, validation, and testing using the proposed self-training
pipeline, and 2) providing ground truth for system evaluation after human inspection. Along
with the low frame rate sensory data, there are lightweight H.265 encoded videos of camera
images for the convenience of previewing scenes of interest in the field without needing to
extract the complete set of logged files from the system, thus saving on 4G data usage and
transmission time. As a comparison, the H.265 video has a size of 1 MB per minute, which is

only 2% of the size (55 MB per minute) of the low frame rate data.

The event-triggered logging provides full frame rate sensory data just before and after the
cassowary detection events. With a size of around 500 MB per minute, the full frame rate
sensory data are primarily for post-analysis of driver behaviour and event playback. They

are not a required part of the self-training pipeline.

All the data are initially stored within the edge computer after being logged. Extracting
the entire set of logged data off the edge computer incurs prohibitively high cost via the
4G network, and is not necessary either. Instead, only a small subset of collected data, for
instance, less than 1.5% for this particular field data collection and trial, are of interest for
training and evaluation purposes. They are selectively transferred to Amazon Web Services
(AWS) through the 4G connection.

6.4.1 Selective Data Extraction and Iterative Model Update

With a detection model running in the system, the process of selective data extraction and

iterative model update is summarised as follows:

+ The timestamp of every animal detection event is recorded. The corresponding raw
data files (low and full frame rate data) are first tagged, and uploaded to the AWS cloud

later.

o The raw data files are downloaded, and the low frame rate data are fed into the self-
training pipeline for auto-labelling. The labelled data are then used for model retraining,

validation, and testing.
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+ The retrained model is deployed to the detection system, and the above steps repeat.

As one can see, an initial detection model is required to kick off the above iterative process.

There are different ways an initial detection model can be produced:

+ The initial model is trained using the pseudo-labelled field data.

+ The initial model is trained using only synthetic data. With the field data available after

the first iteration, the model is retrained using the combination of synthetic data and

field data.

Both methods have been experimented with at different points during the data collection
stage. The synthetic data method is more preferable as it can start without the availability of

any field data and requires less manual intervention.

The field data collected during this process contains both true and false positive detection
cases. Both types are useful for model training in the self-training pipeline. Nevertheless, false
negative cases are not captured in this process, as a model is never capable of detecting cases
that it will miss. Arguably, true and false positive cases are considered sufficient for model
training, given that the data amount and diversity are not compromised by the absence of
false negatives. Also, it is recommended to set a low detection threshold for the detection
model during the data collection phase, which brings two benefits: 1) reducing the occurrence

of false negative cases, and 2) exposing more false positive cases, which then contribute to

the model training.

Figure 6.10.: The images illustrate the effectiveness of our pipeline on thermal imagery. Initially pre-trained

on RGB images, the model has successfully adapted to process thermal images.

The iterative update of the trained models resulted in improved detection performance over

time during the field trial. Additionally, we tested the model’s capability to adapt to different
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domains by assessing its performance on thermal images, validating the robustness of our
self-training pipeline across varying data types. Two examples are presented in Figure 6.10.

Detailed evaluation results are presented in Section 7.2.2.

6.4.2 Selective Data Extraction for Manual Inspection

The above process covers both the true positive and false positive cases. However, it won't
be able to include false negative cases regardless of how well the detection model works.
All types of cases—true and false positive, and false negative cases—are required for sys-
tem performance evaluation. To identify false negative cases, manual inspection of the raw
sensory data is required. The process of selective data extraction for manual inspection is

summarised as follows.

o All of the H.265 videos are automatically uploaded to the AWS cloud. They are then
downloaded for manual inspection, creating a list of animal sightings as ground truth,

along with other scenes of interest.

+ Only sensory data of the listed scenes are then uploaded to the AWS cloud. They are
then downloaded and processed to be used for performance evaluation. Optionally,

the data can be added to the training dataset to help model training.

Manual data inspection, admittedly, is a time-consuming and labour-intensive process,
but it is a common way to generate ground truth, and is only required for the purpose of
performance evaluation. Since the H.265 videos are recorded at a rate of 1 frame per second,
skimming through a one-hour long video takes as little as 2 minutes. There is a software tool
developed to facilitate the inspection, with features such as play, pause, next frame, previous
frame, fast forward, fast rewind, zoom in, and zoom out. It also supports a shortcut key to

log the timestamps of interesting events.

6.5. Challenges

6.5.1 Solar Power Issue

Soon after the field data collection started, it was found that the solar power system that

came with the VMS trailer was not capable of continuously powering the VMS itself and the
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attached animal detection system. As soon as the issue emerged, three software measures

were applied to reduce the power consumption in an attempt to mitigate the issue:

+ Fine-tune the CPU and GPU clocks on the edge computer, which saves about 7 W during
the daytime.

* Run the detection system with all sensors streaming except for the LiDAR sensor during
the daytime. This saves an unknown amount of power on the LiDAR side, which cannot

be measured remotely.

+ Put the detection system into idle mode during the night, i.e., not running the sensor
drivers and detection algorithms. This saves an extra 15 W on the edge computer side
during the night. It should also save some power on the LiDAR side, which cannot be

measured remotely.

Additionally, the VMS trailer’s battery voltage started to be monitored continuously by the
edge computer to help track the power situation over the remaining course of data collection
and throughout the on-road trial. These power-saving measures helped but still couldn’t
prevent the system from running into a situation where power cutouts happened almost
daily during the early hours of the day, with power being restored when the battery voltage
improved around the middle of the morning. This heavily affected data collection during the

power cutout periods, especially the morning sessions.

In the meantime, TMR was sourcing extra solar power for the VMS trailer. On 6 March
2024, when the VMS ftrailer was relocated from Location A to B, a solar light tower was
connected to the VMS ftrailer to provide exira solar power. Since then, the power situation
has significantly improved. The detection system managed to operate 24/7 with all sensors
active for most of the days before the trial started. Yet, despite only a few cases of power
cutout happening due to bad weather, the battery voltage stayed on the low side for the
majority of the time. When the battery voltage was found very low, some power-saving

measures were reinstated to preserve energy.

The power issue garnered attention again at the beginning of the on-road trial, mainly for
two reasons. First, the overall power consumption increased in the on-road trial compared
with that during data collection, because the VMS was not yet electrically connected during
the data collection phase. Secondly, it was found that there is a higher voltage requirement
for turning on the VMS than for running the detection system. This causes an issue where the
VMS may not have enough power to turn on when needed due to insufficient battery voltage.

This affected the trial not just in the early morning but also on rainy days or even cloudy
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days. Those existing power-saving measures were exercised but were found insufficient to
improve the battery voltage fast enough. There was a power cutoff event on the night of 9

May 2024, and the power was restored the next morning.

To mitigate this power issue, TMR arranged a site visit on 14 May 2024 to conduct three

tasks:

« Checking the solar charging systems to make sure they work as expected

Improving the battery voltage by charging it up using a generator

+ Disconnecting the power supply of the LiDAR, which saves at least 20 W. Removing the
LiDAR from the sensor suite does not affect the cassowary detection because it was not
the primary sensor for this task. This, however, does pose challenges to the collection

of LiDAR data for the subsequent driver behaviour analysis.

Additionally, a CCTV camera on the VMS trailer was found operating and consuming power.
It was disconnected to save some power. After the site visit, the battery voltage was signi-
ficantly improved, and it was confirmed later by tracking the battery voltage that the overall

power consumption had dropped.

6.5.2 Sensor Occlusion

The detection system faces sensor occlusion issues caused by environmental and traffic
factors when set up at either Location A or Location B. The issue is found particularly severe
at Location A, where the causes of occlusion include the red traffic warning signage, the hilly
terrain, and vehicles on the road. Examples of sensor occlusion are presented in Figure 6.11.
The occlusion brings a detrimental effect on the quality of data collected at the location for
model training and evaluation. Additionally, it poses extra challenges for the trained model
to operate effectively at this location, particularly given the distance of 180 metres and over

from the frequent crossing area.

The occlusion situation has significantly improved since relocating the system to Location
B. As Figure 6.12 shows, the environmental factors, for instance, a traffic pole or the bush, still
exist but are not considered the primary cause, as was the case at Location A. At the new
location, traffic becomes the major factor for sensor occlusion, which causes the system to

detect the cassowary late and delay triggering the VMS in some crossing cases.
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Figure 6.11.: Sensor occlusion examples at Location A. (a) - (f) illustrate cases with different severity levels of
sensor occlusion caused by environmental and traffic factors, such as the red warning signage,
the hilly terrain, and vehicles. When the cassowary is crossing from left to right, the occlusion
caused by the warning signage eliminates the advantage of detecting the animal early on, before
it crosses the road. As (d) and (e) show, the partial occlusion caused by the hilly terrain for distant
cassowaries presents challenges for the cassowary detector. Lastly, vehicles on the road also
cause temporary occlusion for the cassowaries, as (c) and (f) illustrate. In (f), a cassowary was
heavily occluded by both the signage and the red car.

The sensor occlusion caused by the traffic can be alleviated by installing the sensor head at
an elevated point on the roadside. For this particular field trial, however, the height of system
installation is constrained by the VMS ftrailer. Another solution is to install multiple sensor
heads in the field to jointly monitor the crossing area from different perspectives. In this

case, the sensor heads complement one another, reducing the chance of sensor occlusion.

6.5.3 Weather Influence

During the data collection and on-road trial, weather is an important factor influencing the
performance of the detector. In bad weather, as shown in Figure 6.13, the images captured
are blurry and distorted due to raindrops on the camera lenses, posing challenges for the
cassowary detection. There are two potential solutions worth investigating to improve the

system’s robustness against rainy weather and mitigate this issue:

+ Adding lens hoods to the cameras to keep the lens free from raindrops
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(a) (b)

Figure 6.12.: Sensor occlusion examples at Location B. In (a), a cassowary was temporarily occluded when it
walked behind a traffic pole and bush. In (b), a cassowary was occluded by the heavy traffic for

more than 10 seconds when crossing the road.

+ Fusing RGB imaging with other sensor modalities, such as thermal and LiDAR, as Figures
6.13c and 6.13d demonstrate.

Additionally, sunny weather also poses challenges for detection due to shadows and high
lighting contrast on the road surface or in the bush, which can be misclassified as cassowaries,
causing false positive detections. Two examples are presented in Figure 6.14. To rectify this
issue, the false positive data were collected and incorporated into the model training to reduce

this occurrence of such errors.

6.5.4 Sensor Angle Shift

As mentioned in Section 6.2.1, the sensor head was installed on the mast of the VMS trailer.
Over time, the sensor head was found to slowly shift to the right (i.e., towards the road)
for unclear reasons. Hypotheses include the inherent mechanical properties of the mast,
the sinking of some of the VMS trailer’s legs into the soil, and the influence of the wind.
Figure 6.15 illustrates the angle shift of the telephoto camera over one week. Despite several

corrective efforts by TMR and RoadTek during site visits, the issue has persisted.

This shifting issue has resulted in late detection of cassowaries at distances over 100 m.
When the sensor is pointing at the desired angle, as shown in Figure 6.15a, the system is
capable of detecting the cassowaries on the left roadside, allowing it o provide motorists
with several seconds of warning time before the cassowaries start crossing the road. After

the sensor angle shifts, however, the system cannot detect the crossing cassowaries until
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(c) (d)

Figure 6.13.: Raindrops on camera lenses during rainy weather cause blurry and distorted images, presenting
challenges for cassowary detection. (a) and (b) present images from the RGB cameras. (c) shows
the thermal image. The LiDAR point cloud from a bird’s-eye view is shown in (d), where the LiDAR

points from the cassowary are clearly visible.

seconds after they have started crossing from left to right, as Figure 6.15b illustrates. This
leads to late detection and delayed triggering of the VMS, compromising the road safety
outcome of the detection system. The angle shift has also caused a few missed detection
cases where cassowaries were on the left roadside, attempting to cross the road. They were
not detected because they were out of the telephoto camera’s field-of-view after the angle
shift.

In addition to manually correcting the sensor angle periodically, a software solution has
been implemented to compensate for the angle shift of the telephoto camera by introducing a
new digitally-zoomed image channel from the wide-angle camera, which aims at the desired
direction. This is considered a temporary solution; having the telephoto camera pointing at

the desired angle is still the preferred approach.
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Figure 6.14.: The shadows and high lighting contrast in a sunny day can cause false positive detections.

(a) (b)

Figure 6.15.: The sensor angle shift over the period of one week.

6.6. Conclusions

The field trial in FNQ has demonstrated the effectiveness and robusiness of the developed
large animal-activated roadside monitoring and alert system in a real-world traffic environ-
ment. The field data collection, on-road trial, and the self-training machine learning pipeline
have provided valuable insights into the system performance and areas for further improve-

ment. Key conclusions from the trial are summarised as follows.

First, the data collection at two locations allowed for the collection of a diverse dataset.
Despite challenges such as sensor occlusion and power issues, the collected data played
an important role in the self-training machine learning pipeline. The on-road trial validated
the system’s capability to detect the cassowaries and trigger alert messages on the VMS for
motorists.
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Besides, the self-training machine learning pipeline, which combines cloud and edge com-
puting technologies, proved to be a robust method for continuous model improvement. The
field trial demonstrated that using synthetic data for initial training and auto-labelling with a
VLM is effective in overcoming the data scarcity problem and improving the model perform-

ance. Quantitative evaluation results are presented and discussed in Chapter 7.
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7.1. Introduction

This chapter provides insights into and outcomes of two essential components of the field trial;
namely, the developed animal detection system, discussed in Section 7.2, and the evaluation
of the LAARMA system'’s impact on actual on-road driver behaviour. The latter is covered in
Section 7.3, and is based on the field trial conducted as the final study within the LAARMA
project at a site based in FNQ.

7.2. Animal Detection System Analysis (USYD)

7.2.1 Field Data Analysis

The developed animal detection system was set up at Location A and subsequently relocated
to Location B in Kuranda, QLD. Please refer to Section 6.2.2 for details about these locations.
Compared to Location A, Location B was chosen as a more optimal location for data collection
and the on-road trial. The field data collected from 8 March to 30 June 2024 at Location B

are more complete and of higher quality, and thus are used for analysis in this section.

In this document, a cassowary sighting case is defined as the observation of one or more
cassowaries on the road or either roadside, reported either manually or automatically by
the detection model, in the deployed system’s camera images in the field. Note that in
some sighting cases, the cassowary attempted to cross the road or remained on the roadside
without actually crossing the road. From the road safety perspective, these cases are equally
important to those where the cassowary did cross the road, as the possibility of crossing at

any time exists.

According to the recorded data, there were 287 cassowary sightings over a total 115 days
from 8 March to 30 June 2024, resulting in an average of 2.5 cases per day. The overall
cassowary sightings over these dates are illustrated in Figure 7.1. Note that there was an
interruption in system operation from 17 April to 19 April 2024, causing there to be no data
available for these three days. This was due to an electrician unintentionally leaving the
system power off after a site visit. It is also noteworthy that despite the system running,
there were no sightings for a period of up to two weeks in June, specifically, from 12 June to
23 June 2024, as revealed in Figure 7.1. In addition, out of the total 287 sighting cases, 238

involve a single cassowary, while 49 have two cassowaries sighted in the scene.
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Figure 7.1.: Cassowary sightings distribution over dates. The highest number, 15, was recorded on 11 May 2024.
Note that there is no data available from 17 April to 19 April 2024, during which the system was not

running.

The sightings were obtained by manual inspection of recorded videos before the first de-
tection model was deployed on 22 March 2024. Afterwards, the sightings were first reported
by the detection models, before being manually verified in the recorded videos. Although
the vast majority of sightings were reported by the detection models, manual inspection was
still used as an important measure to identify a few true cases missed out by the model, i.e.,
the false negative (FN) cases. The produced cassowary sighting dataset plays an important
role as the ground truth in subsequent detection model and system performance evaluations.
The dataset also can be used by wildlife conservation community to study cassowary be-
haviours. It should be emphasised that manual data inspection in this project is solely for
performance evaluation purposes. No manual data labelling is required for the developed

self-training machine learning pipeline.

From Figure 7.1, it can be seen that the sightings varied each month from March to June. To
gain more insights into monthly cassowary activities, Figure 7.2 summarises the sightings for
each month over these four months. It is observed that the sightings increased significantly
from March to May, peaking at 166 cases in May, before a steep drop in June. The on-road
trial period covers May and June, which correspond to the busiest and the quietest months,

respectively, among all four months.
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Figure 7.2.: Cassowary sightings from March to June 2024. Note that the figure shows projected results for
March and April, considering that there are 24 days of data collected in March, and there are 3
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Figure 7.3.: The histogram of cassowary sightings per day.

Figure 7.3 presents a histogram showing the distribution of cassowary sightings per day.
This histogram suggests that while there are many days with no sightings at all, a small
number of sightings per day is quite common, and very high numbers of sightings per day
are rare. Specifically, the number of sightings per day ranges from 0 to 15. Most of the data
fall within the range of 0 to é per day. The most frequent number of sightings per day is 0,
with a count of 26 days. There are only 4 days with sightings greater than 10 per day.
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Figure 7.4.: The histogram of cassowary sightings over hours of a day. Note that the number for 6am is under-

reported due to data unavailable for this slot for 14 days in March.

With the timestamps recorded for each sighting case, it is also insightful to analyse which

hours of a day the cassowaries appeared most frequently from the data. As Figure 7.4
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demonstrates, the 4pm and 5pm time slots have the highest numbers of cassowary sightings.
They are followed by the 6am and 7am slots. Note that for the first two weeks after the
relocation in March, the system started running from 7am. This causes the number at éam
to be under-reported due to the absence of data recorded during the 6am slot for these two

weeks.
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Figure 7.5.: The histogram of ranges for cassowary sightings.

Lastly, the range of the cassowary in the scene was estimated for each sighting case.
The estimated range was obtained from LiDAR data when available, or through RGB images
using salient environment features as references. Based on the range information, Figure 7.5
presents a histogram showing the distribution of sighting ranges from 0 to 200m. The figure
clearly shows that the highest number of sightings, totalling 138 cases, occurred within the
100 to 150m range. In comparison, each of the remaining range groups has approximately

50 cases.

7.2.2 Detection Performance Evaluation

7.2.2.A. Model Evaluation

The field-collected data are split into training data and evaluation data. The training data were
used for training the cassowary detection models. There are in total 10 models trained during
the data collection and on-road trial periods, using data available up to different dates. Most
of the model training work occurred during the data collection period, i.e., March and April,
in preparation for the subsequent on-road trial. For a fair comparison, their performance is
assessed using the same evaluation dataset in this section. The evaluation dataset consists

of two parts:

+ The true positive (TP) part contains 4577 images (3127 RGB + 1450 thermal) containing
cassowaries from all cameras over 38 cassowary sighting cases. Specifically, there

are 16 cases from March, 17 from April, 3 from June, and 2 from July. All images are
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labelled with bounding boxes around cassowaries. Each sighting case is labelled with
the estimated range for evaluating the model performance in detecting cassowaries at

different distances. There are 15 cases within the range of 0-100m, and 23 cases within
the 100-200m range.

+ The false positive (FP) part contains 11975 images (9166 RGB + 2809 thermal) without
cassowaries from all cameras over 34 FP cases from March to July. There is no range

information for this part because the images do not contain cassowaries.

This evaluation dataset does not include cases from May because all data in May have
been used for training the model M240618. Two metrics are employed to evaluate the model
performance, True Positive Rate (TPR), and False Positive Rate (FPR), which are calculated based

on the number of occurrences of true negatives (TN), FP, FN, and TP. Specifically,

TP

TPR_TP+PN
EFP

PPR_FP+TN

According to the above equations, the TPR represents the proportion of images where a
model correctly detects a cassowary out of all the images where cassowaries are actually
present. The FPR, on the other hand, is the proportion of images where a model incorrectly
identifies a cassowary, divided by all images where cassowaries are not present. To put it
simply, TPR measures how well the model correctly detects cassowaries, while FPR measures
how often the model makes mistakes by falsely identifying something else as a cassowary.

A perfect model would achieve a TPR of 100% and an FPR of zero.

The TPR evaluation results for the trained detection models are presented in Table 7.1. To
evaluate the performance of models intended for field deployment, we focus on how each
model performs in individual sighting cases. Therefore, the TPR is first calculated for each
of the 38 sighting cases in the evaluation dataset. These case-specific TPR values are then
averaged for all cases within each range group to obtain the mean TPR, thus mitigating the
bias from cases containing more images than others. The FPR results are calculated based

on all RGB images contained in the FP part of the evaluation dataset.

Generally, given a model, both TPR and FPR vary depending on the confidence threshold
used during the model inference. A lower confidence threshold results in a higher TPR, but
the FPR increases in the meantime. A higher FPR causes lower precision of the model in

detecting targets. Thus, instead of using a fixed confidence threshold across all models, an

Section 7.2: Animal Detection System Analysis (USYD)

190



Model Name | Mean TPR (0-100m) | Mean TPR (100-200m) | FPR

M240206 4.2% 2.6% 0.37%
M240318 19.4% 10.6% 0.39%
M240320 32.3% 6.9% 0.37%
M240326 45.3% 14.7% 0.38%
M240331 45.8% 6.4% 0.39%
M240408 54.5% 17.1% 0.37%
M240410 53.6% 11.8% 0.38%
M240417 7.3% 25.7% 0.37%
M240426 73.7% 29.9% 0.35%
M240618 78.5% 30.0% 0.37%

Table 7.1.: The evaluation results of 10 trained detection models. The models are listed following a chronological
order of their dates of training. For each model, the TPR results are first calculated for RGB frames in
every sighting case in the evaluation dataset, and then averaged over all cases in each range group.

The FPR results are calculated based on all RGB frames combined in the FP part of the dataset.

FPR cut-off threshold of 0.4% is employed to ensure that all the models are evaluated fairly.
This approach is essentially to ask the question, “What is the best TPR a model can achieve

without exceeding an given FPR limit2”

The mean TPR results in Table 7.1 show a clear trend that models trained at a later date
have higher mean TPR values, primarily because of more field data used for training. Also,
as expected, the mean TPR for the 0-100m range is higher than that for the 100-200m range
across all models due to the closer distance. The worst performing model is the earliest
one, M240206, which was trained using synthetic data only. The best-performing models
are M240426 and M240618. The model M240426, trained with data collected in March
and April, was used throughout the on-road trial period. Compared with earlier models, the
model M240618 was trained with the largest dataset, spanning from March to early June.
It achieves the highest mean TPR in both the 0-100m and 100-200m ranges. However, this
model was not deployed in the field as it was close to the end of on-road trial. Nevertheless,

its results are significant in validating the developed self-training machine learning pipeline.

In addition, a collection of Receiver Operating Characteristic (ROC) curves are presented

in Figure 7.6 to summarise the performance for different models and ranges. A curve that
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Figure 7.6.: Receiver Operating Characteristic (ROC) curves for different models and ranges on RGB images.
A curve closer to the top left corner indicates better performance, characterised by a higher TPR

and lower FPR.

bows towards the top left corner indicates better performance, as it shows a high TPR and
low FPR. It is clearly seen that the overall performance of the models M240618, M240426,
and M240417 are close, and are significantly better than that of others,

It is important to note that both TPR and FPR results in Table 7.1 and Figure 7.6 are obtained
based on this specific evaluation dataset. The model’s FPR in this context does not directly
translate to the actual system’s FPR when operating in the field. There are other factors
influencing the system-level performance. For instance, a Bayesian filter is employed after
the image detection to filter out spikes in FP detections. This is the main reason we present
the system-level performance results in Section 7.2.3 in addition to the model performance

results.

7.2.2.B. Sensor Modality Evaluation

RGB Cameras

More in-depth and comprehensive evaluation results of the trained models are presented
in Table 7.2, for different cameras and ranges. From Table 7.2, it is clearly seen that overall
the best performing models are M240618 and M240426, aligned with the conclusion from

the model evaluation section.

The performance of different RGB cameras varies significantly across different ranges. First,

it is evident that each camera performs better in the 0-100m range than in the 100-200m
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Model Name Medium-Angle Cam | Digital-Zoomed Cam Telephoto Cam
0-100m | 100-200m | 0-100m | 100-200m | 0-100m | 100-200m

M240206 9.4% 0% 0.5% 2.2% 0% 8.2%
M240318 19.9% 0% 25.9% | 5.8% 10.6% 20.3%
M240320 23.2% | 0% 452% | 6.9% 31.7% 19.9%
M240326 40.8% | 0% 48.3% | 18.2% 49.1% 35.7%
M240331 309% | 0% 5715% | 5.9% 56.1% 19.5%
M240408 48.3% | 0.1% 63.0% | 221% 54.6% | 39.6%
M240410 449% | 0.1% 62.6% | 11.3% 572% | 35.3%
M240417 62.3% | 0.9% 77.5% 36.1% 78.6% | 521%
M240426 67.8% | 2.0% 77.3% 43.5% 79.0% | 56.1%
M240618 69.4% | 2.2% 845% | 44.6% 86.5% | 53.9%

Table 7.2.: The mean TPR results for different RGB cameras, models, and ranges.

range, which is expected due to a higher pixel density of cassowaries at closer distances.

The medium-angle camera, in particular, only performs well for the 0-100m range.

When comparing the cameras across both the 0-100m and 100-200m ranges, the tele-
photo camera performs the best, followed by the digital-zoomed camera and the medium-
angle camera. The superior performance of the telephoto camera is attributed to its narrower

FoV compared to the other two, which concentrates more pixels on the target.

In the 0-100m range, the performance of the telephoto camera is only slightly better than
that of the digital-zoomed camera. However, at the 100-200m range, the telephoto camera
outperforms the digital-zoomed camera by a larger margin. It also has the potential of
using lenses with even higher optical zoom, making it more suitable for scenarios requiring
longer range detection. However, its narrower FoV results in a shorter detection window for
cassowaries within its view. Covering a wider crossing area in the field would require the use

of multiple telephoto cameras, leading to a higher hardware cost.

The digital-zoomed camera, which operates as a virtual camera by cropping images from
the medium-angle camera, offers flexibility in changing direction digitally and can have mul-
tiple instances covering a wider area without additional hardware costs, despite its inferior

performance to that of the telephoto camera. However, its digital zooming capability is con-
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Table 7.3.: Comparison of different RGB camera types.

Model Name | Mean TPR (0-100m)

Mean TPR (100-200m) | FPR

TM240520 15.8% 0% 0.46%
TM240523 34.9% 0% 0.46%
TM240626 44.5% 0% 0.49%

Table 7.4.: The evaluation results of 3 trained detection models for thermal imaging. The models are listed
following a chronological order of their dates of training. For each model, the TPR results are first
calculated for thermal frames in every sighting case in the evaluation dataset, and then averaged

over all cases in each range group. The FPR results are calculated based on all thermal frames

combined in the FP part of the dataset.

strained by the native resolution of the medium-angle camera, limiting its maximum detection

range.

Lastly, the strengths and limitations of different RGB cameras as per the above discussion
are summarised in Table 7.3. It provides a general guideline for choosing the suitable sensor

configuration when deploying the system at a new animal crossing site.

Thermal Camera and LiDAR

There are three thermal models trained for detecting cassowaries on thermal images. Their

performance evaluation results are presented in Table 7.4 and also compared in Figure 7.7.

In Table 7.4, an FPR cut-off threshold of 0.5% is employed to ensure a fair comparison. As
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Figure 7.7.: ROC curves for the thermal camera over different models and ranges.

the results show, the model TM240626 is the top-performing model among all three models.
However, all the models can only detect cassowaries within the 0-100m range. This is due
to the low resolution of the particular thermal camera model used in the project. While
the thermal camera excels in showing warm-blooded animal activities than RGB cameras,
in particular under low light and nighttime conditions, it lacks the pixel density required
for animal classification tasks beyond 100m, and it has a higher cost compared with RGB
cameras. In the future work, other sensing strategies, such as dynamic object tracking, could

be considered to improve thermal camera’s performance at longer ranges.

The sensor suite of the detection system also includes a solid-state LIiDAR. With a horizontal
FoV as narrow as 15°, this LiDAR can produce denser point clouds on animals compared with
mechanically scanning LiDARs that distribute their points over 360°. However, there are two
technical challenges in using this LiDAR for animal detection during the field trial. The first
one is that attributed to its narrow FoV, the LiDAR suffered from the same sensor angle shift
issue observed with the telephoto camera, as detailed in Section 6.5.4. The issue prevented
the LiDAR from pointing at the optimal angle for detecting cassowaries. The second one is
related to the solar power, as discussed in Section 6.5.1 in the Field Trial report. The LiDAR
was disconnected from the system on 14 May 2024 to conserve power for the rest of the
system. Due to these challenges, the potential use of LIDAR data for cassowary detection
has not been well investigated in this project. Despite these difficulties, there are LiDAR data
recorded during part of the field trial period, which can be used for analysing interactions

between vehicles and cassowaries.
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7.2.3 System Evaluation

The model evaluation results discussed in Section 7.2.2 do not fully reflect the overall detec-
tion system performance. The system’s detection events are initiated by the event-triggering
pipeline running on the edge computer, which aggregates the Bayesian-filtered results from
multiple instances of YOLOv8 object detector across different cameras. Therefore, the per-
formance of the detection system based on the model M240426 is evaluated based on

detection events recorded during the on-road trial, spanning from 30 April o 30 June 2024.

Over the 62 days of trial period, a total of 259 events were reported by the detection
system. Each event has been checked against the ground truth data, as described in Section
7.2.1, to classify them as TP, FN, and FP detection events. The distribution of different types
of detection events over the trial dates is presented in Figure 7.8. The total and average
numbers for each event type are summarised in Table 7.5, which highlights that the system
missed as few as 6 cassowary cases during the trial period. These FN events were identified
through manual inspection of the recorded data. It is found that 4 of them were caused by

the sensor angle shift issue of the telephoto camera.

Precision and recall are employed as the performance metrics for the detection system

evaluation, calculated as

Precision = L
~ TP +FP
TP
Recall = TP+ IN

Based on the summarised events, the precision and recall for the system during the on-
road trial are 0.77 and 0.97, respectively. This means 77% of the events the system triggered
involved cassowaries, and the system accurately triggered for 97% of the events where
cassowaries were present. The exceptionally high recall demonstrates the system'’s high
sensitivity in detecting cassowaries crossing the road or on the roadsides, a critical aspect

for road safety-related use cases.

As Table 7.5 also presents, the system reported on average less than one FP event per
day. This level of average FP result is reasonable, considering that the deployed detection

model examines 1.4 million RGB images from é6am to 7pm each day.

A histogram of the FP events per day is presented in Figure 7.9. It is demonstrated that

the vast majority of days have three or fewer FP events per day. There are only two days
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Figure 7.8.: The distribution of cassowary detection events over dates.

TP |FN | FP

Total 194 | 6 59

Average (per day) | 3.13 | 0.10 | 0.95

Table 7.5.: A summary of detection events during the 62-day on-road trial.

with four FP events, and one day each with five and six FP events. The causes of the FP
events primarily fall into a few categories, including vehicles, persons, vegetation, animals,
and shadow. Many FP events were caused by the same objects over a short period of time.

A summary of how many cases for each type of causes are illustrated in Figure 7.10.
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Figure 7.9.: The histogram of FP events per day during the on-road trial.

The occurrence of FP events can be reduced by incorporating similar FP cases into the
model training. For instance, the model M240618 was trained using a dataset containing
more recent data compared to the model used during the on-road trial period and has

shown improved overall performance, as discussed in Section 7.2.2.
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Figure 7.10.: The pie chart of different categories of FP causes. Vehicles, persons, and vegetation are the three

most common causes.

7.2.4 Conclusions

The developed animal detection system demonstrated effective performance in detecting
cassowaries at Location B in Kuranda, Queensland. The field data collected from 8 March
to 30 June 2024 provided valuable insights into cassowary activities from month to month.
The on-road trial, spanning 62 days from 30 April to 30 June 2024, validated the system’s
high sensitivity and reasonable precision in detecting cassowaries, with an impressive recall
of 0.97. Despite some false positive events, the system’s overall performance was robust,
providing a reliable tool for monitoring animals and enhancing road safety in areas with AVCs

hazards.

7.3. Driver Behaviour Analysis (QUT)

As noted in Chapter 5, while the simulator study represented the first of two studies to evaluate
behavioural responses to messaging triggered on the VMS via the LAARMA system, the on-
road field trial comprised the second of these two studies. This section first outlines the site-
related information and nature of the data collection (via pneumatic road tubes) of motorists’

behaviour in the field trial area.
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Figure 7.11.: Layout of the vehicle speed monitoring sites with VMS and animal detection technologies. The dia-
gram shows the eastward direction of travel, with vehicle speed sensors located at four sequential
sites leading up to an animal crossing zone. The figure is for illustrative purposes only.

7.3.1 Site Information

Figures 7.11 and 7.12 show the four vehicle speed monitoring sites in the trial area. Note
that Figure 7.11 is only for illustrative purposes. The GPS coordinates of the four sites were
recorded during the pneumatic tubes installation. Table 7.6 summarises the site locations and

the distances between these sites calculated using Google Earth Pro.

Figure 7.12.: Aerial view of the study segment along Kennedy Hwy, showing the four measurement sites (Site

1 to Site 4) with distances between each site labelled to facilitate speed and acceleration analysis
in this study.
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Site GPS Coordinates Distance (in metres) to next site
Site 1 | 16°48'57.9"S 145°38°32.5"E 57
Site 2 | 16°48'58.8"S 145°38'34.2"E 107
Site 3 | 16°49'01.2"S 145°38°36.8"E 162
Site 4 | 16°49'04.1"S 145°38'41.4"E N/A

Table 7.6.: Geographic coordinates and distances in metres between measurement sites along Kennedy Hwy

for traffic data analysis.

7.3.2 Traffic Data Cleaning

Figure 7.13 displays a portion of traffic data recorded at Site 3, captured in a tabular format
with various traffic parameters. Columns include identifiers like DS, TrigNum, and Ht, along
with temporal data such as Date and Time. Other crucial traffic metrics displayed are Dr
(Direction), Speed (km/h), Wb (tonne), Hdwy (sec), and Gap (sec). Notably, Figure 7.13 reveals
instances of duplicate entries and potential errors, indicated by the recurrence of identical
Speed and Wb values across different rows, alongside conflicting direction indicators (‘WO
vs ‘ET’) for the same vehicle. These duplicate entries consistently show zero values for Gap
and Headway, suggesting data inaccuracies or system misreadings. To improve data quality

and accuracy, all rows with zero values in both Gap and Headway columns were removed,

streamlining the dataset for more reliable analysis and interpretation.

WSite1

] 75459x16 table

WSite2

WSsite3

WSited

Figure 7.13.: Table displaying traffic data collected at Site 3, highlighting vehicle direction, speed, and spacing
discrepancies. Rows with zero values for both Gap and Headway, indicative of data errors, were
identified for removal to ensure data integrity. Note: WSite4, WSite3, WSite2 and WSitel in the

1 2 3 4 5 6 7 8 9 10
DS TrigNum Ht Date Time Dr Speed Wb Hdwy Gap

118 1°000d3d89" 12 02/04/2024 04:48:43 W0 677100 154200 1129000 112.7000
119 1"000d3d95" 02/04/2024 04:48:45 W0 66.5700 2.6400 24000 1.5000
120 1"000d3d99" 02/04/2024 04:48:47 WO 64.6500 3.1300  1.5000 1.3000
121 1"000d3d9d" 4 02/04/2024 04:48:51E1 797900  3.0100 111.2000 111.1000
122 1°000d3da1” 02/04/2024 04:50:38 E1 619500 2.6800 107.5000 107.4000
123 1°000d3da5" 17 02/04/2024 04-50-47 F1 A28A00 24000 85000 83000
124 1"000d3da5" 17 02/04/2024 04:50:47 WO 62.8600  2.6900 0 0
125 1°000d3da5" 17 02/04/2024 04:50:47 E1 62.8600 2.6900 0 0
126 1°000d3da5" 17 02/04/2024 04:50:47 WO 62860& 2.6900 0 0
127 1"000d3db6" 13 02/04/2024 04:51:47 WO 65.2800  4.5200 180.2000 180
128 1°000d3db6” 13 02/04/2024 04:51:47 E1 657700  4.5200 0 0
129 1°000d3dbé" 13 02/04/2024 04:51:47 WO 65.2800 _ 4.5200 0 (4]
130 1"000d3dc3" 4 02/04/2024 04:52:21 W0 580900 27200 33.6000 32.9000 |

table are renamed to Site 1, Site 2, Site 3, and Site 4, respectively, in the data analysis.
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Figure 7.14.: Histograms depicting the distribution of vehicle speeds at four sites. Each panel represents the
frequency of observed speeds at a particular site, with Sites 1 through 4 showing distinct patterns

in speed variability and central tendencies.

7.3.3 Traffic Statistics

The analysis presented in this section uses data collected across four sites from 2 April 2024
to 10 April 2024, inclusive. This data pertains exclusively to eastbound traffic, which is the
direction targeted by the LAARMA intervention. It is important to note that the traffic data were
collected prior to the on-road trial of the LAARMA system, which started on 30 April 2024.
During this data collection period, the VMS was inactive (i.e., not displaying any messages).
Therefore, the analysis results are intended to provide insights into regular traffic conditions
in the field trial area, without the influence of the LAARMA system.

7.3.3.A. Speed Distributions

Figure 7.14 illustrates the distribution of vehicle speeds across the four sites. Sites 1 and 2
show greater variability in speeds, as indicated by their higher standard deviations, com-
pared to Sites 3 and 4. Specifically, Site 2 has the highest standard deviation of 7.35 km/h,
while Site 1 also demonstrates significant speed variation. In contrast, Sites 3 and 4 exhibit
more consistent speeds, with lower standard deviations, suggesting less fluctuation in vehicle

speeds at these locations.
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Comparison of Speed Statistics Across Four Sites
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Figure 7.15.: Comparative analysis of speed metrics across four sites (from the event’s end to the approach's
start). This collection of bar charts illustrates the mean, standard deviation, minimum, maximum,
25th percentile, median, 75th percentile, and interquartile range (IQR) of vehicle speeds recorded
at each site. The colours consistently represent each site across all statistics, facilitating a clear

visual comparison of speed dynamics and variability.

7.3.3.B. Summary Statistics

Speed Summary Statistics

As Figure 7.15 illustrates, the mean speed across the four sites shows modest variation, with
Site 4 exhibiting the highest mean speed at approximately 61.85 km/h and Site 3 displaying
the lowest at 56.79 km/h. This suggests that traffic flow at Site 4 is typically faster, possibly
due to road characteristics. The standard deviation values, which measure speed variability,
range from 6.30 km/h at Site 4 to 7.35 km/h at Site 2, indicating more consistent speeds at
Site 4 and slightly more varied speeds at Site 2. The maximum speeds recorded across the

four sites suggest instances of extreme speeding, particularly at Site 4.

The interquartile range (IQR) is used to measure statistical dispersion, highlighting the
spread or variability within the collected data. Specifically, the IQR represents the range
between the third quartile (Q3) and the first quartile (Ql), capturing the middle 50% of the
speed values. Here, IQR is fairly consistent across the sites, from 6.28 km/h at Site 4 to
7.70 km/h at Site 2, pointing to a similar distribution of speed between the lower and upper

quartiles across the different locations.

Headway Summary Statistics
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Comparison of Headway Statistics Across Four Sites
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Figure 7.16.: Comparative analysis of headway metrics across four sites (from the event's end to the approach's
start). This collection of bar charts illustrates the mean, standard deviation, minimum, maximum,
25th percentile, median, 75th percentile, and IGR of vehicle speeds recorded at each site. The
colours consistently represent each site across all statistics, facilitating a clear visual comparison

of speed dynamics and variability at each site.

As shown in Figure 7.16, the mean headway across the sites is relatively stable, with the
values ranging from 20.38 seconds at Site 2 to 21.78 seconds at Site 1, indicating uniform
traffic density conditions across these locations. Despite this consistency in the mean distance,
the standard deviation of headway shows high variability, ranging from 223.54 seconds at
Site 1 to 235.26 seconds at Site 4, which suggests fluctuating vehicle distances that might

reflect varying traffic conditions or times of data collection.

Maximum headway values are exceedingly high across all sites, with values exceeding
24082 seconds, indicating the presence of unusually large gaps between vehicles at times,
likely during low-traffic periods. The IQR for headway shows minimal variation from 13
seconds at Site 4 to 15.6 seconds at Site 1, which further signifies a consistent distribution of
mid-range vehicle spacing across different traffic environments. Note that a smaller IGR indic-
ates less variability or more consistency in the headway values, meaning vehicles maintain

more uniform spacing, while a larger IQR suggests greater variation in the headways.

The minimum values of headway, particularly those less than 1 second, could be erroneous

given that some instances could be where a vehicle was towing a trailer, for example.

Section 7.3: Driver Behaviour Analysis (QUT)

203



Site Site 1 Site 2 Site 3 Site 4

Hour | Mean Speed Mean Headway | Mean Speed Mean Headway | Mean Speed Mean Headway | Mean Speed Mean Headway
0 57.58 2689.65 60.71 2689.57 59.69 2689.35 70.47 2279.41
1 58.83 2420.03 61.88 2296.14 59.91 2296.14 66.06 4487.2
2 57.87 1992.21 59.28 1992.12 58.04 2010.22 66.65 1937.15
3 54.98 1340.69 58.35 1381.15 57.6 1424.07 66.09 1077.35
4 64.77 69.47 65.39 69.19 63.29 68.89 67.91 65.81
5 65.96 35.50 65.95 35.35 63.61 35.62 67.12 30.93
6 61.7 15.27 60.94 15.29 58.42 15.29 62.36 13.82
7 60.46 11.89 59.93 11.92 57.57 1.93 61.81 1.78
8 58.70 n.73 58.64 1n.73 56.63 11.81 61.55 1.07
9 58.10 .15 58.08 1.19 56.21 1.22 60.87 10.11
10 57.80 12.09 57.69 12.12 55.74 12.26 60.79 11

il 57.45 1.98 57.73 1.99 55.82 12.14 61.02 n.31
12 57.42 12.26 57.49 12.31 55.93 12.39 61.01 11.62
13 57.22 12.35 57.22 12.36 55.63 12.43 60.59 12.17
14 57.34 1.57 57.30 11.59 55.62 n.67 60.75 1.34
15 57.93 10.68 57.75 10.72 55.73 10.76 61.14 10.65
16 59.36 1.95 58.88 1.94 56.49 1.98 62.05 1.34
17 60.43 16.74 59.87 16.74 57.48 16.8 62.17 15.73
18 62.36 28.23 61.90 28.18 59.51 283 63.82 26.82
19 64.7 47.43 64.89 47.31 621N 47.32 66.63 4414
20 63.78 72.50 64.51 71.92 62.63 7.9 68.03 74.85
21 61.83 309.06 62.98 310.34 61.29 309.79 68.84 258.91
22 63.21 470.70 64.08 470.66 62.26 470.87 67.68 493.47
23 62.17 79413 62.92 787.55 60.89 794.65 67.61 714.21

Table 7.7.: Mean speed and headway by hour of the day from the four sites.

7.3.3.C. Time of the Day Analysis

Based on the Table 7.7, for the mean speed and headway at different hours of the day across

four sites, we can derive some insights info traffic patterns specific to each location.
Analysis of Mean Speed Variation Across Hours and Sites
Figure 7.17 presents the variation of the mean speed across hours and sites. Specifically,

Site 1: Shows a dip in speeds during the early morning (3 AM) and afternoon, with a
gradual rise in speed later in the evening, reflecting typical traffic slowdowns during rush

hours and increased speeds during off-peak times.

Site 2: Demonstrates a similar pattern to Site 1, with the same drop in speeds during

midday and an increase in the evening, consistent with lighter traffic in the later hours.
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Boxplot of Speed (km/h) vs. Hour of the Day Boxplot of Speed (km/h) vs. Hour of the Day
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Figure 7.17.: Boxplots of the speed vs hours of the day at the four sites.

Site 3: Displays moderate speed variations, with lower speeds during the morning and
evening rush hours. The midday period shows a slight increase in speed, although less

pronounced than in the other sites.

Site 4: Stands out from the other sites due to its consistently higher speeds, particularly
during the late evening. Speed fluctuations are evident throughout the day, with the lowest
speeds observed in the early morning, followed by a peak late in the evening, likely due
to reduced traffic density. We should emphasise that Site 4 differs from the other sites due
to the presence of an overtaking lane at its location. Fluctuations in speed are apparent
throughout the day, with the lowest speeds likely during peak hours, hinting at increased
traffic. Conversely, late-night hours record the highest speeds, suggesting reduced traffic
density.

Analysis of Mean Headway Variation Across Hours and Sites

Figure 7.18 shows the variation of headway (seconds) vs. hour of the day at the four

study sites. For all sites, the headway is shortest during peak hours, reflecting higher traffic
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Figure 7.18.: Boxplots of the headway vs hours of the day at the four sites.

density and possibly slower-moving vehicles. The y-axis uses a scale of 10%, illustrating the
significantly larger headway values observed during the early morning and late-night hours.
This scale highlights the notable variation in headways at off-peak times, as compared to the

more consistent, lower headway values during daytime hours when traffic is more regular.

7.3.4 Impact of LAARMA on Driver Behaviour and Vehicle Speeds

This study evaluates the effectiveness of the LAARMA system and the messaging it triggers
in improving motorists’ behaviour and, ultimately, enhancing road safety through efforts
to reduce AVCs. The on-road trial setup is presented in Figure 7.19, where the approach
zone and event zone for the driver behaviour analysis are labelled. Specifically, we explore
whether purpose-devised messaging displayed on the roadside VMS, which are triggered
by the LAARMA system on detection of a cassowary on or near the road, affect drivers’
speeds at designated locations in the field trial area. We hypothesised that vehicle speeds

would decrease at these sites when messages were displayed (and thus triggered by the
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Figure 7.19.: Map of the four vehicle monitoring sites corresponding to the approach zone (i.e., Sites 1 and 2)

and the event zone (i.e., Sites 3 and 4).

LAARMA system) signalling a cassowary had been detected on or near the road. The analysis
presented in this section uses traffic data recorded across the four vehicle speed monitoring
sites from 10 April 2024 to 30 June 2024, inclusive.

7.3.4.A. Methodology

To test our study’s hypothesis, we employed a comprehensive methodology, as presented in
Figure 7.20 using objectively-measured traffic data from pneumatic tubes situated on-road

at four specific sites in the field trial area. The following steps outline our approach:

1. Traffic Data filtering based on the triggers timing: At each of the four sites, we gathered
all available traffic records within a specified time range (from timestamp_from to

timestamp_to).

2. Traffic Data Filtering Based on Direction: As only drivers moving from west to east
could see the message displayed on the VMS, our analysis focused on sites positioned
before and after the VMS. Sites 1 and 2, located before the VMS in the approach zone,
and Sites 3 and 4, situated after the VMS in the event zone, were crucial for capturing
interactions between drivers and animals. We concentrated on eastward traffic (labelled
‘E') and excluded westward traffic (labelled ‘W’).
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@ Traffic Data Filtering
Based on Triggers Timing

:Gather all traffic records;
:From timestamp_from to timestamp_to;
:At each of the four sites;

Filtered Data

@ Traffic Data Filtering
Based on Direction

:Focus on eastward traffic ('E');
:Exclude westward traffic ("W');
:Sites 1 and 2 (approach zone);
:Sites 3 and 4 (event zone);

Direction Filtered Data

@ Variable Addition

:Introduce "waming" variable;

note right

Categories:
o Category A: TP & VMS ON
o Category B: TP & VMS OFF/NC or FN/NA
o Category C: FP & VMS ON

end note

:Set "waming" based on VMS sign status;

Data with Warning Variable

© Traffic Data Filtering
Based on Case Type

:Exclude records where case_type = FP;

Final Data Set

© Data Modeling

:Use generalized linear model;
:Normal distribution;
:Incorporate "warning" variable;

Figure 7.20.: The methodology flow to evaluate the effectiveness of the LAARMA system and the messaging it
triggers in improving motorists’ behaviour.

3. Variable Addition: A new variable, “warning,” was introduced for each traffic record to
indicate whether a message was displayed on the VMS. This variable allowed a more

nuanced analysis based on the type of case and the status of the VMS:

- Category A: True positives (TPs) with an active VMS. Drivers’ reactions would have
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been based on both the message on the VMS and their direct observation of a

cassowary (case_type = TP and sign_status = ON).

- Category B: TPs with an inactive VMS due to disconnection or low power, and false
negatives (FNs). Drivers’ reactions would have been based on their reactions solely
to direct observation of a cassowary (case_type = TP and sign_status = OFF or

NC, or case_type = FN or NA).

- Category C: False positives (FPs) with an active VMS. In this condition, drivers’ re-
actions would involve them having seen a message on the VMS, but no cassowary

would have been encountered (case_type = FP and sign_status = ON).

In our analysis, the ‘warning’ indicator variable was set to one for TP cases where the
VMS was active. For all other scenarios, including FNs and TPs with the sign off, the
‘warning’ variable was set to zero as shown in Eq(1). This stratification helped us assess

the impact of the messaging on the VMS on driving behaviour.

‘ 1 for TP cases and the VMS was active
warning = Eq(1)
0 for FNs and TPs with the sign off

4. Traffic Data Filtering Based on Case Type: Traffic records corresponding to a trigger
with case type = FP are excluded to control for variance due to the absence of actual

animal presence.

5. Data Modelling: We analyse the speed data using a generalised linear model with a

normal distribution, incorporating the newly added variable for warnings.

This methodology tested our hypothesis and also provided insights into how effectively
the LAARMA system is as potentially modifying driver behaviour in the presence of potential

road hazards posed by animals.

7.3.4.B. Analysis Results

In the subsequent subsections, we present results of the analysis of vehicle speeds at four
measurement sites. This analysis explored how variations in speed could be explained
through the use of two key variables: the ‘warning’ variable, which was set to one when

the VMS was active and zero otherwise, and the ‘headway’ variable.
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Approach Zone Sites
Site 1

Table 7.8 provides statistical evaluation of the influence of headway and warning signals on
vehicle speeds. Here, the intercept stands at approximately 56.19 km/h, which represents the
average vehicle speed in the absence of any external influencing factors such as headway
adjustments or warning signals. The impact of the ‘Warning’ variable is notably significant,
demonstrating a reduction in vehicle speed by approximately 4.26 km/h when a warning is
active (p-value <.00001). This substantial decrease provides support for the effectiveness of

messaging on the VMS (as triggered by the LAARMA system) in prompting drivers to reduce

their speed.
Name Estimate | SE tStat DF pValue Lower Upper
(Intercept) | 56.19078 | 0.420474 | 133.6368 | 2324 | O 55.36624 | 57.01532
Hdwy 0.048525 | 0.008961 | 5.41517 2324 | 6.75E-08 | 0.030953 | 0.066097
Warning | -4.26409 | 0.482921 | -8.82979 | 2324 | 2.02E-18 | -5.21109 | -3.31709

Table 7.8.: Model estimates at Site 1.

Conversely, the ‘Hdwy’ (headway) variable is associated with a slight but statistically sig-
nificant increase in speed by about 0.049 km/h for each unit increase in headway (p-value
<.00001). This indicates that drivers tended to accelerate slightly when the distance between
vehicles increased, although the effect is relatively minor compared to the relatively stronger
reduction in speed associated with display of the messaging on the VMS. These findings
provide support for the positive impact of messaging on the VMS (iriggered by the LAARMA

system) in influencing driver behaviour under various traffic conditions.
Site 2

The statistical analysis provided in Table 7.9 evaluates the effects of headway and visual
warnings on vehicle speeds. The intercept value at approximately 52.00 km/h indicates the
base speed in scenarios without the influence of messaging on the VMS or adjustments in
headway. Notably, the presence of a message on the YMS was shown to lead to a significant
reduction in drivers’ speed, with a decrease of about 3.44 km/h when the messaging is
displayed (p-value <.00001). This finding thus provides support for the positive impacts of
messaging on the VMS (as triggered by the LAARMA system) on reducing drivers’ speed. On

the other hand, the ‘Hdwy’ variable, which represents the distance between vehicles, shows
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a small but statistically significant increase in speed by 0.06 km/h for each unit increase
in headway (p-value <.00001). This suggests that drivers tended to slightly increase their
speed when given more space ahead, although the impact is considerably less significant
compared to the relatively stronger reduction in speed associated with display of messaging
on the VMS.

Name Estimate | SE tStat DF | pValue Lower Upper

(Intercept) | 51.99648 | 0.487961 | 106.5587 | 2371 | 0 51.03961 | 52.95336
Hdwy 0.064206 | 0.010786 | 5.952591 | 2371 | 3.03E-09 | 0.043055 | 0.085357
Warning | -3.4364 0.568945 | -6.03995 | 2371 | 1.78E-09 | -4.55208 | -2.32072

Table 7.9.: Model estimates at Site 2.

Event Zone Sites
Site 3

Table 7.10 presents a detailed statistical analysis of the factors affecting vehicle speeds,
specifically examining the effects of headway and messaging on the VMS. The intercept
of 46.85 km/h indicates the baseline speed when neither headway adjustments nor mes-
saging are considered. The ‘Warning’ variable demonstrates a significant reduction in vehicle
speed, decreasing by approximately 6.18 km/h when warnings are active (p-value <.00001),
highlighting positive effects of the messaging on the VMS in reducing drivers’ speeds and
thus promoting increased caution as approaching a potential hazard. In contrast, the ‘Hdwy'’
(headway) variable is associated with a small but statistically significant increase in speed,
approximately 0.06 km/h per unit increase in headway (p-value <.00001). This suggests that
greater headway between vehicles might encourage slightly faster driving, though the effect
is relatively minor compared to the relatively more pronounced positive effects relating to

reductions in vehicle speeds associated with display of messaging on the VMS.

Name Estimate | SE tStat DF pValue | Lower Upper
(Intercept) | 46.85146 | 0.54412 86.10503 | 2258 | 0 4578444 | 47.91849
Hdwy 0.059842 | 0.011826 | 5.06007 | 2258 | 4.53E-07 | 0.03665 | 0.083033
Warning | -6.1764 0.640332 | -9.64562 | 2258 | 1.33E-21 | -7.4321 -4.9207

Table 7.10.: Model estimates at Site 3.
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Site 4

The analysis of vehicle speed in relation to the activation of messaging on the VMS and
headway distance at Site 4 is shown in Table 7.11. The coefficient for the intercept indic-
ates that the baseline speed, without the influence of messaging or varying headway, is
approximately 54.70 km/h. Notably, the ‘Warning’ variable shows a significant decrease in
vehicle speed by about 4.75 km/h when messaging is displayed on the VMS (p-value <
0.00001), thus, providing support for the positive impacts of messaging on the VMS in redu-
cing drivers’ speeds. Conversely, the ‘Hdwy' (headway) variable, representing the distance
between vehicles, has an estimated coefficient that suggests a negligible effect on speed
(a decrease of 0.00168 km/h per unit increase in headway), with a non-significant p-value
(0.802), indicating that headway, within the range observed, does not substantially influence

vehicle speed under the conditions studied.

Name Estimate | SE tStat DF | pValue Lower Upper

(Intercept) | 54.69558 | 0.346466 | 157.8671 | 2119 | O 54.01613 | 55.37503
Hdwy -0.00168 | 0.006727 | -0.25026 | 2119 | 0.802414 | -0.01488 | 0.011508
Warning | -4.74912 | 0.412546 | -11.5117 2119 | 8.68E-30 | -5.55815 | -3.94008

Table 7.11.: Model estimates at Site 4.

Refining Traffic Data Analysis at Event Sites: Adjusting Trigger Timings to Mitigate

Noise in Treatment Group Observations

The analysis for Site 3 and Site 4 contains potential noise due to the methodology em-
ployed in filtering traffic data based on trigger timing. At the event sites, Site 3 and 4 often
include vehicle traffic that is coincidental with the onset of triggers. This inclusion can result
in ‘noise’ within the treatment group data, where it is assumed that drivers observe the mes-
saging on the VMS. However, in reality, the VMS may activate their messaging only after the
vehicles have passed, meaning that drivers do not actually see the messaging. To mitigate
this issue and enhance the accuracy of our analysis, we adjusted the timing of our data
filtering at these sites. Specifically, we shifted the start and end times of the triggers by 32
seconds for Site 4 and 16 seconds for Site 3. These adjustments correspond to the estimated
travel times from Site 2 to Sites 4 and 3, respectively. This strategy aimed to increase the
likelihood that the vehicles included in the filtered data at Sites 3 and 4 have actually seen
the messaging on the VMS, thereby reducing the noise in the analysis and improving the

reliability of our findings.
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The adjustment of trigger timings at Sites 3 and 4 yielded distinct changes in the analysis
results, highlighting the impact of more accurate data filtering techniques. After adjusting the
triggering times to account for the actual visibility of the messaging on the VMS to drivers,

the results demonstrated a more pronounced effect of the messaging on reducing vehicle

speeds at both sites compared to the unadjusted data.

Name Estimate | SE tStat DF pValue | Lower Upper

(Intercept) | 46.46724 | 0.552268 | 84.13894 | 2255 | 0 45.38424 | 47.55025
Hdwy 0.063821 | 0.012282 | 5.196248 | 2255 | 2.22E-07 | 0.039735 | 0.087906
Warning | -6.29849 | 0.645047 | -9.7644 | 2255 | 4.35E-22 | -7.56344 | -5.03355

Table 7.12.: Model estimates at Site 3 after adjusting the triggering times at the location of the Site 3.

At Site 3, the adjusted analysis results in Table 7.12 indicate a stronger effect of the mes-
saging on the VMS on reducing driver’ speeds, with the coefficient for the warning increasing
from -6.176 to -6.298. This result is supported by a very low p-value, reinforcing the statistical
significance of the VMS messaging’s positive impact on reducing drivers’ speed. Additionally,
the estimate for headway became more positive, and its significance improved, suggesting
that the greater spacing between vehicles might encourage slightly faster driving, yet this

effect appears to have been mitigated by the drivers’ response to the messaging on the VMS

in terms of reductions in speeds.

Name Estimate | SE tStat DF pValue Lower Upper

(Intercept) | 54.02682 | 0.373115 | 1447996 | 2264 | O 53.29514 | 54.75851
Hdwy 0.002918 | 0.007187 | 0.405962 | 2264 | 0.684809 | -0.01118 | 0.01701
Warning | -5.055 0.430614 | -11.7391 2264 | 6.21E-3I -5.89945 | -4.21056

Table 7.13.: Model estimates at Site 4 after adjusting the triggering times at the location of the Site 4.

Similarly, at Site 4, the results of the adjusted analysis in Table 7.13 shows that the impact
of the messaging on the VMS on drivers’ speed reduction increased even further, with the
warning coefficient increasing from -4.749 to -5.055. This increase supports there having
been an even more substantial behavioural response when accounting for accurate trigger
exposure. The p-value remains significant, further supporting the positive impact of the

messaging on reducing drivers’ speed, despite a slight increase in the standard error of the
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warning estimate. Notably, the headway parameter changed from slightly negative to slightly
positive, though it remains statistically insignificant, suggesting that headway has a minimal

impact on drivers’ speed at this site.

7.3.5 Crash Reduction Estimation

The calculation of crash reduction rates plays a pivotal role in the safety assessment for the
future deployment of LAARMA. This estimation process is essential for understanding the
potential returns on investment from implementing these technologies at scale. This section

focus on determining the crash reduction rate for LAARMA, utilising the Nilsson power model.

This model, established by Nilsson in 1981, is grounded in the principle that the safety level
of a transport system is intimately linked to its speed levels. According to the model, even
minor adjustments in driving speeds can lead to significant and quantifiable reductions in
crash risks. This model is particularly versatile, capable of estimating the impact on vari-
ous injury severities, such as slight and fatal injuries, across different road types like urban

arterials and freeways.

The Nilsson power model formula is rearranged to calculate the reduction in injuries from
the LAARMA technology is as follows:

Mean speedvps-on

Crash Reduction Factor =1 —
Mean speedvnys—-orr

and
Mean speedyps-on = Po) + BHdwy(i) X headways + Bwarning(i)
Mean speedyps-orr = fo + PHawy X headways

where
Boi) is the intercept estimated at the study site i € {1,2, 3,4},
BHawy(i) is the headway coefficient estimated at the study site i € {1,2,3, 4},
headways is the observed headway in seconds,

Bwarning(i) is the estimated coefficient of the warning indicator variable at the study site
ie{1,23,4},

C isis an exponent dependent on the injury severity and location type from [201] described
in Table 7.14.
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Road type considered | Fatal Serious in- | Slight injury | All injury
crashes jury crashes | crashes ex- | crashes ex-
exponent exponent ponent ponent

Rural roads/freeways | 4.1 2.6 1.1 1.6

Urban/residential 2.6 1.5 1.0 1.2

roads

All roads 35 2.0 1.0 1.5

Table 7.14.: Exponents applied in Nilsson power model for crash reduction determination.

7.3.5.A. Crash Reduction Results

Figure 7.21 presents the calculated crash reduction factors (CRF) for fatal, serious, slight injuries,

and all injuries combined across four urban/residential road sites using the Nilsson power

model. The respective exponents used are 2.6 for fatal crashes, 1.5 for serious injury crashes,

1.0 for slight injuries, and 1.2 for all injury types, reflecting the expected reduction in crash

severity as speeds decrease.
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Figure 7.21.: Crash reduction factors (CRF) by injury severity across the sites: This figure illustrates the effect-

iveness of LAARMA reducing crash severities across four sites. Sites 3 and 4, located in the event

zone, demonstrate higher reductions in crash severities, particularly for fatal and serious injuries,

compared to Sites 1 and 2 in the approach zone. The graph highlights the impact of targeted safety

measures in enhancing road safety and reducing potential injuries and fatalities in high-risk zones.

Section 7.3: Driver Behaviour Analysis (QUT)

215



7.3.5.B. Analysis by Site and Injury Severity

Fatal CRF: Site 3 shows the highest reduction in fatal crashes, indicating a significant impact
of LAARMA on fatal crash rates, followed closely by Site 4. In contrast, Sites 1 and 2 (approach

zone) demonstrate lower reductions.

Serious Injury CRF: Similar to fatal crashes, Site 3 leads in reducing serious injuries, fol-
lowed by Site 4. The difference between the event zone (Sites 3 and 4) and the approach

zone (Sites 1 and 2) is noticeable but less pronounced than with fatal crashes.

All Injury CRF: Reflecting a mix of severity types, all injury reductions are highest in Site

3 and lowest in Site 1, with Sites 2 and 4 showing intermediate values.
Slight Injury CRF: Similar fo that of all injury crash reductions.

The above analysis shows that event zone (Site 3 and Site 4) consistently shows higher
reductions across all injury types, particularly for more severe injuries. This suggests that
LAARMA in these zones are highly effective at reducing speeds sufficiently to impact the
more severe outcomes significantly. The approach zone, while still benefiting from LAARMA,

shows less reductions.

These findings underscore the critical role of LAARMA in specific road zones where animal
crossing to maximise safety benefits, particularly where severe injuries or fatalities are a

concern.

7.3.6 Conclusions

The comprehensive analysis across four distinct sites provided valuable insights into the ef-
fects of messaging on the VMS and headway on vehicle speeds. Overall, the results support
there being positive effects of the LAARMA system and the messaging it triggers on reducing
driver’s speeds. At the event zone sites (Sites 3 and 4), significant reductions in vehicle speeds
were observed when messaging was displayed on the VMS, with decreases of approximately
6.18 km/h and 4.75 km/h, respectively.

With the adjusted data, the observed reductions in vehicle speeds were more pronounced
when messaging was displayed on the VMS, showing decreases of approximately 6.30 km/h
at Site 3 and 5.06 km/h at Site 4. These adjustments from the previously noted reductions of

about 6.18 km/h and 4.75 km/h at these sites, respectively, provide support for the positive

Section 7.3: Driver Behaviour Analysis (QUT)
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effects of the LAARMA system and the messaging it triggers on reducing drivers’ speeds in

high-risk zones where AVCs are probable.

At the approach zone sites (Sites 1 and 2), while the VMS still played a significant role in
reducing speeds, the decrease was slightly less pronounced, with reductions of 4.26 km/h

and 3.44 km/h, respectively.

Interestingly, across all sites, headway showed a consistent, albeit minor, influence on
increasing vehicle speeds. These slight increases, ranging from approximately 0.048 to 0.064
km/h per unit of headway, suggest that when headway reaches a value equivalent to the
absence of a leading vehicle, drivers have greater freedom to choose their speed, though this
behaviour may be considered largely mitigated by the positive effect on reducing drivers’

speeds that results from messaging displayed on the VMS.

Using the Nilsson power model, the crash reduction estimation confirms that the LAARMA
system is more effective in the event zone (Sites 3 and 4), where significant reductions in fatal
and serious injuries are observed, compared to the lower reductions seen in the approach

zone (Sites 1 and 2).
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Conclusions and Recommendations

In conclusion, the development and implementation of the LAARMA system represent an im-
portant Australian initiative in mitigating AVCs, thereby enhancing road safety and promoting
wildlife conservation. By integrating advanced sensing technologies with cutting-edge ma-
chine learning models together with purpose-devised messaging displayed on a roadside
VMS, this system has demonstrated its capability to detect cassowaries with high accuracy
and robustness in challenging environments in FNQ and issue real-time messaging to alert
motorists to an upcoming hazard. The innovative approach of using a self-training machine
learning pipeline, combined with synthetic data for initial training and auto-labelling through
a VLM, has shown to be effective in overcoming challenges related to data scarcity. This
approach has facilitated continuous model improvement, ensuring that the system remains

responsive and effective across various deployment sites.

Prior to the field trial, purpose-devised messages for display on the roadside VMS were
developed, concept-tested, and evaluated via two studies. The first study comprised a qual-
itative study featuring a series of 8 focus groups with N = 36 drivers to concept-test 20
concepts. The second study, a larger online survey, assessed the effectiveness of 4 of the
messages with a sample of 557 licensed drivers. Overall, the messages assessed in the
survey performed well on the various outcome measures of effectiveness that were imple-
mented in accordance with the SatMDT [1]. Among just some of the key findings highlighted
across these studies was the importance of identifying the type of animal on the signage and

prioritising the “slow down” strategy before the “scan” strategy. Participants also emphasised
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the need for motorists to understand the real-time nature of the messaging and supported
the implementation of broader public education campaigns about the LAARMA system to aid

understanding about the system and how it operates.

Two of the four messages were subsequently tested further with drivers’ behavioural re-
sponses to them evaluated within a driving simulator study. The study comprised two bal-
anced groups of participants for a total of 51 drivers. The findings indicated that the messages
had positive impacts on reducing drivers’ speeds particularly in the approach zone window
on sighting of the message on the VMS. It was thought that the effect was more pronounced
in this approach zone rather than in the event zone in the simulator study given that par-
ticipants were aware that there was no possibility that they would actually collide with a

cassowary in the event zone.

The field trial conducted in FNQ provided valuable insights into the real-world performance
of the LAARMA system. The trial not only validated the system’s ability to detect large animals
like cassowaries, achieving an impressive recall of 0.97, but also identified areas for further
refinement, such as improving power and sensor head designs, and enhancing the system’s
robustness against adverse weather conditions. The analysis of field data also discussed the
strengths and weaknesses of different sensor modalities in detecting cassowaries at different
distances, offering practical guidance for selecting the optimal sensor configuration when

deploying the system at new animal crossing locations.

In addition to the animal detection results, the field traffic data analysis revealed significant
reductions in vehicle speeds in the event zone, with decreases of 6.30 km/h and 5.06 km/h
at Sites 3 and 4, respectively, when messaging was displayed on the VMS (as triggered
by the LAARMA system). The crash reduction analysis further supported this, showing that
LAARMA's impact is more pronounced in the event zone, where significant reductions in fatal
and serious injuries were observed using the Nilsson power model. Although the speed and
crash reduction was slightly less significant in the approach zone (Sites 1 and 2), the findings
underscore the importance of targeted safety interventions in reducing vehicle speeds and

mitigating AVCs.

Overall, the successful integration of the detection system with purpose-devised messaging
on the roadside VMS highlights the practical applicability of the developed system in real-
world traffic scenarios, offering a proactive approach to alerting motorists and helping to

prevent AVCs.

Looking ahead, future enhancements to the LAARMA system should focus on incorporating

more recent data to further refine the system'’s accuracy and reduce false positives. Addition-
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ally, expanding the system'’s deployment to other regions will provide further opportunities

to assess its scalability and broader impact on road safety and wildlife conservation.

Lastly, the knowledge gained from the project and the lessons learned from addressing

the environmental and technological challenges during the field trial are of importance for

future real-world implementations. Based on these insights, there are several areas where

future research and development could enhance the system'’s effectiveness and reliability:

By

Given the solar power issues, exploring higher-capacity solar panels and battery sys-
tem could ensure uninterrupted system operation. Also, further optimisation of power-
saving measures and energy-efficient hardware and software components should be

considered.

To mitigate sensor occlusion and improve detection accuracy, systematic location op-
timisation should be performed. Besides, installing the sensor head at a more elevated
point, and the deployment of multiple sensor heads to monitor the animal crossing

area from different locations and perspectives should be explored.

To enhance the system'’s robustness against adverse weather conditions, adding lens
hoods or implementing fusion techniques for multiple sensor modalities could be be-
neficial. Also, developing better solutions for the mechanical mounting of the detection

system should be explored to prevent the sensor angle shift issue.

More research is needed to expand the system to detect a wider range of animal
species and test it in different geographical locations to enhance its scalability and
generalisation capabilities. This could involve training the model on diverse datasets

and conducting field trials in various environments.

From the message design perspective, more efforts would be required to confirm and
test targeted messages insofar as other types of animals are being detected. While
the strategies recommended may not change, there could be different perceptions and

expectations regarding the warning information presented about different animals.

As the system can be easily deployed at different sites, the long-term effect of the
system must be evaluated, in order to understand what strategies can be employed

regarding the deployment of the VMSs at multiple sites.

addressing these recommendations, the LAARMA system may be further refined and

scaled, contributing to improved road safety and wildlife conservation efforts in Queensland

and Australia wide.
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A. VMS Message Concepts (Study 1)

Message A Message B

Screen 1 Screen 2 Screen 1 Screen 2

(a) (b)
Message C Message D

Screen 1 Screen 2 Screen 1 Screen 2

(c) (d)
Message E Message F

Screen 1 Screen 2 Screen 1 Screen 2

Figure 8.1.: Text only message concepts.
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Alternative Text 1:

Screen 2

Screen 1

Alternative Text 2:

Screen 2

Screen 1

(b)

Figure 8.2.: Alternative text options.
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Message A Message B

Screen 1 Screen 2 Screen 1 Screen 2

(a) (b)
Message C Message D

Screen 1 Screen 2 Screen 1 Screen 2

(c) (d)

Message E Message F

Screen 1

Screen 1 Screen 2

Figure 8.3.: Text and image message concepts.
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Message A

(b)

Figure 8.4.: Image only message concepts.
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B. Demographic Survey (Study 1)

Are you aged 18 years or older, reside
in Australia, hold a valid motor vehicle or
motorcycle licence, and drive/ride for at

least one hour per week?

O Yes

O No

If no, we thank you for your interest in this
study. Unfortunately, we are looking for
people aged 18 years or older, who reside
in Australia, hold a valid motor vehicle or
motorcycle license, and drive for at least

one hour per week.

What is your current age in years?

years

What is your gender?

O Male
O Female
O Other

O Prefer not to say

What type of licence do you hold? If you
hold a motorcycle licence only, please se-

lect the closest equivalent.

O Learner

O Provisional 1
O Provisional 2
O Open

O International

How long have you held your mo-
tor vehicle/motorcycle licence (including

your learners) (in years)?

years

How many hours in an average week do

you drive and/or ride?

hours per week

Which Australian State or Territory do you

currently reside in?

0 Queensland

O New South Wales

O Australian Capital Territory
O Victoria

O Tasmania

O Northern Territory

0 South Australia

O Western Australia

What is your postcode?

Section B: Demographic Survey (Study 1)
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C. Focus Group Schedule (Study 1)

Overview:

Thank you for agreeing to participate in this focus group. Today we will be sharing some
message concepts for a variable messaging sign (VMS) to alert drivers of the presence of
large animals on the road. The VMS will be connected to a device that detects that an animal
is near the road. When the device detects an animal, a message will be displayed on the
VMS to warn approaching drivers. The purpose of this focus group is to discuss what you

think about these message concepts for that warning.

The messages which you will be shown are in the early stage of development. There are
no right, or wrong answers, we are interested in learning about your current perceptions and

thoughts about these messages.
Questions (asked after presentation of each message):
Q1. What was your first reaction to this message?
Q2. Was the message easily understood?
+ Was there more than one possible meaning to the message?
+ Did you need to read it more than once to be certain of its meaning?

+ Did you know what was being depicted in the image?

s it important for the image to clearly show what specific animal is nearby? Why/why

not?

Could it be delivered in a more effective way (text/image/combination)?
Q3. Did the message make you aware of a potential safety hazard?

« Why/why not?

» Was the type of hazard made clear?

Q4. If you were driving on an open road and saw this message, how do you think you

would respond?

» Would you change how you were driving in any way?
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- PROMPT: key behaviours of reducing speeding and monitoring road environment

(if not raised organically)

- PROMPT: interest/intention/willingness to pull up/stop on the road to see the an-

imal (if not raised organically)
Q5. Do you think the message is effective?
+ Why/why not?
Q6. What if anything would you change about the message? Keep the same?
» Why should this be changed? How?
Q7. Any final comments about this message?

Q8. What are your thoughts about this alternative wording/design? Which do you prefer?

(asked for paired concepts only)
Final questions (after all messages have been shown):

Q9. The VMS is designed to only display a message when the system detects that there
is an animal nearby. The rest of the time, the screen will be blank. That being said, if you
saw one of these messages, would you understand that it meant that there was an animal
nearby right now? Or would you assume it was a general warning that there are animals in

the area?

Q10. Were there any particular messages that stood out for you? Why?

Thank you for taking part in today’s focus group.
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D. Online Survey (Study 2)

D.1 Part A: Demographics

Are you aged 18 years or older, reside
in Australia, hold a valid motor vehicle or
motorcycle licence, and drive/ride for at

least one hour per week?

O Yes

O No

If no, we thank you for your interest in this
study. Unfortunately, we are looking for
people aged 18 years or older, who reside
in Australia, hold a valid motor vehicle or
motorcycle license, and drive for at least

one hour per week.

What is your current age in years?

years

What is your gender?

O Male
O Female
O Other

O Prefer not to say

What type of licence do you hold? If you
hold a motorcycle licence only, please se-

lect the closest equivalent.

O Learner

O Provisional 1
0 Provisional 2
O Open

O International

How long have you held your mo-
tor vehicle/motorcycle licence (including

your learners) (in years)?

years

How many hours in an average week do

you drive and/or ride?

hours per week

Which Australian State or Territory do you

currently reside in?

0 Queensland

0 New South Wales

O Australian Capital Territory
O Victoria

O Tasmania

O Northern Territory

O South Australia

O Western Australia

What is your postcode?

Section D: Online Survey (Study 2)
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D.2 Part B: Pre-Acceptance Measures

The following section relates to your general attitudes and intentions to perform specific

actions while driving after being alerted that there is an animal on or near the road.

PART B1: DAYTIME

When answering the questions in this section, please imagine that it is daytime, the weather

is fine, and you are travelling on a single lane, regional road, like the image below.

1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 6 7 Wise

2. To what extent would scanning the road environment after seeing messaging about

an animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 6 7 Wise
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3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

$ 9

> O g ? =)
o 2 & 5 B
c o < c v
S © = o o
= .u v O = ©
n o Zz < n

| intend to slow down 1 2 3 4 5 6 7

It is likely that | would slow | 1 2 3 4 5 6 7

down

| intend to scan the road | 1 2 3 4 5 6 7

environment

It is likely that | would scan | 1 2 3 4 5 6 7

the road environment

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1

5. How willing would you be to scan the road environment after seeing messaging about

2

3 4

there being an animal on or near the road?

Not at all willing 1

6. If you were driving along a regional road in an area you were unfamiliar with and

saw messaging about there being an animal on or near the road, how likely do you think

2

3 4

5

5

6 7 Very willing

6 7 Very willing

you would be to just stop suddenly in an attempt to see the animal?

Extremely

unlikely

Neither likely

nor unlikely

Extremely

likely

PART B2: NIGHTTIME

We would now like to know your general attitudes and intentions to perform the same

driving actions, when driving at nighttime instead of daytime.

When answering these questions, please imagine that it is nighttime, the weather is fine,

and you are travelling on a single lane, regional road.

Section D: Online Survey (Study 2)
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1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 o) 7 Wise

2. To what extent would scanning the road environment after seeing messaging about

an animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 o) 7 Wise

3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

° 8

> O g z? =)}
o £ T 5 > 9
c O < 0 c v
2 3 T O 2 8
n o Zz < n

| intend to slow down 1 2 3 4 5 6 7

It is likely that | would slow | 1 2 3 4 5 6 7

down

| intend to scan the road | 1 2 3 4 5 6 7

environment

It is likely that | would scan | 1 2 3 4 5 6 7

the road environment

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

5. How willing would you be to scan the road environment after seeing messaging about

there being an animal on or near the road?
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Not at all willing 1 2 3 4 5 6 7 Very willing

6. If you were driving along and saw messaging about there being an animal on or near

the road, how likely do you think you would be to just stop suddenly in an attempt to see

the animal?
Extremely Neither likely Extremely
unlikely nor unlikely likely

D.3 Part C: Responses to the Message

1. In a few words can you please describe what the messaging was about?

2. How convincing do you think the messaging was?

Not at all con- Neither convincing Very convin-

vincing nor not convincing cing

3. How persuasive do you think the messaging was?

Not at all per- Neither persuasive Very persuas-

suasive nor not persuasive ive

4. Please indicate on the scale below to what extent the following people would be influ-

enced by this messaging?
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— o]
5 3 _ 8
= c 2 ¢
- 3 2 3
2 E =
How much would you |1 2 3 4 5 6 7
yourself be influenced?
How much do you think |1 2 3 4 5 6 7
other motorists in general
would be
How much would other |1 2 3 4 5 6 7

motorists of similar age

and gender to you

5. If you were driving along and saw this messaging, to what extent would you agree with

the following statements?

S 8
o —_
> 9 S g >
2 5 2 2 ¢
e 3 T O e =
b o z €< A °
Assume it was a general | 1 2 3 4 5 6 7
warning about animals in
the area
Assume it was a real-time | 1 2 3 4 5 6 7
warning about an animal
being on or near
Stop suddenly in your lane | 1 2 3 4 5 6 7
to try and see the animal
Slow down and move off to | 1 2 3 4 5 6 7
the side of the road to try
and see the animal
Simply ignore the mes- |1 2 3 4 5 6 7
saging
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D.4 Part D: Post-Acceptance Measures

Part D1: DAYTIME

We would now like to understand your general attitudes and intentions to perform specific

driving actions after seeing the previous message.

When answering these questions, please imagine that it is daytime, the weather is fine,

and you are travelling on a single lane, regional road, like the image below.

1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 6 7 Wise

2. To what extent would scanning the road environment after seeing messaging about an

animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 6 7 Wise
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3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

$ 9

> O g ? =)
o 2 & 5 B
c o < c v
S © = o o
= .2 o 2 & ©
n o Zz < n

| intend to slow down 1 2 3 4 5 6 7

It is likely that | would slow | 1 2 3 4 5 6 7

down

| intend to scan the road | 1 2 3 4 5 6 7

environment

It is likely that | would scan | 1 2 3 4 5 6 7

the road environment

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

5. How willing would you be to scan the road environment after seeing messaging about

there being an animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

6. If you were driving along a regional road in an area you were unfamiliar with and saw
messaging about there being an animal on or near the road, how likely do you think you

would be to just stop suddenly in an attempt to see the animal?

Extremely Neither likely Extremely
unlikely nor unlikely likely

PART D2: NIGHTTIME

Once again, we would now like to know your general attitudes and intentions to perform

the same driving actions when driving at nighttime, instead of daytime.

When answering these questions, please imagine that it is nighttime, the weather is fine,

and you are travelling on a single lane, regional road.
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1. To what extent would slowing down after seeing messaging about an animal being on

or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 o) 7 Wise

2. To what extent would scanning the road environment after seeing messaging about an

animal being on or near the road be (please select a response on each line):

Unsafe 1 2 3 4 5 6 7 Safe
Bad 1 2 3 4 5 6 7 Good
Unwise 1 2 3 4 5 o) 7 Wise

3. If you were to see messaging about an animal being on or near the road, to what extent

would you agree or disagree with the following:

° 8

> O g z? =)}
o £ T 5 > 9
c O < 0 c v
2 3 T O 2 8
n o Zz < n

| intend to slow down 1 2 3 4 5 6 7

It is likely that | would slow | 1 2 3 4 5 6 7

down

| intend to scan the road | 1 2 3 4 5 6 7

environment

It is likely that | would scan | 1 2 3 4 5 6 7

the road environment

4. How willing would you be to slow down after seeing messaging about there being an

animal on or near the road?

Not at all willing 1 2 3 4 5 6 7 Very willing

5. How willing would you be to scan the road environment after seeing messaging about

there being an animal on or near the road?
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Not at all willing 1 2 3 4 5 6 7 Very willing

6. If you were driving along a regional road in an area you were unfamiliar with and saw
messaging about there being an animal on or near the road, how likely do you think you

would be to just stop suddenly in an attempt to see the animal?

Extremely Neither likely Extremely

unlikely nor unlikely likely

D.5 Part E: Message Strategies

1. To what extent do you agree that the following driving strategies would be useful if you

saw a message about a cassowary having been detected ahead or near the road?

S 3
- ,
2 5 2 20
2 2 T o S g
n o z €< n
Slow down, look out 1 2 3 4 5 6 7
Look out, slow down 1 2 3 4 5 6 7
Reduce speed, be alert 1 2 3 4 5 6 7
Be alert, reduce speed 1 2 3 4 5 6 7

2. Please briefly explain why you provided these scores.

3. Do you have any other suggestions to improve these messages?
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